This commit is contained in:
parent
1899d2a439
commit
b2de5c7f1e
@ -1,44 +1,76 @@
|
|||||||
package Others;
|
package Others;
|
||||||
|
|
||||||
/** @author Varun Upadhyay (https://github.com/varunu28) */
|
import java.util.Arrays;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
|
||||||
|
* It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime,
|
||||||
|
* starting with the first prime number, 2.
|
||||||
|
* The multiples of a given prime are generated as a sequence of numbers starting from that prime,
|
||||||
|
* with constant difference between them that is equal to that prime.
|
||||||
|
* This is the sieve's key distinction from using trial division to sequentially test each
|
||||||
|
* candidate number for divisibility by each prime.
|
||||||
|
* Once all the multiples of each discovered prime have been marked as composites, the remaining
|
||||||
|
* unmarked numbers are primes.
|
||||||
|
* <p>
|
||||||
|
* Poetry about Sieve of Eratosthenes:
|
||||||
|
* <p><i>Sift the Two's and Sift the Three's:</i></p>
|
||||||
|
* <p><i>The Sieve of Eratosthenes.</i></p>
|
||||||
|
* <p><i>When the multiples sublime,</i></p>
|
||||||
|
* <p><i>The numbers that remain are Prime.</i></p>
|
||||||
|
*
|
||||||
|
* @see <a href="https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes">Wiki</a>
|
||||||
|
*/
|
||||||
public class SieveOfEratosthenes {
|
public class SieveOfEratosthenes {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This method implements the Sieve of Eratosthenes Algorithm
|
* @param n The number till which we have to check for prime Prints all the prime numbers till n.
|
||||||
*
|
* Should be more than 1.
|
||||||
* @param n The number till which we have to check for prime Prints all the prime numbers till n
|
* @return array of all prime numbers between 0 to n
|
||||||
*/
|
*/
|
||||||
public static void findPrimesTillN(int n) {
|
public static int[] findPrimesTill(int n) {
|
||||||
int[] arr = new int[n + 1];
|
// Create array where index is number and value is flag - is that number a prime or not.
|
||||||
|
// size of array is n + 1 cause in Java array indexes starts with 0
|
||||||
|
Type[] numbers = new Type[n + 1];
|
||||||
|
|
||||||
for (int i = 0; i <= n; i++) {
|
// Start with assumption that all numbers except 0 and 1 are primes.
|
||||||
arr[i] = 1;
|
Arrays.fill(numbers, Type.PRIME);
|
||||||
}
|
numbers[0] = numbers[1] = Type.NOT_PRIME;
|
||||||
|
|
||||||
arr[0] = arr[1] = 0;
|
double cap = Math.sqrt(n);
|
||||||
|
// Main algorithm: mark all numbers which are multiples of some other values as not prime
|
||||||
for (int i = 2; i <= Math.sqrt(n); i++) {
|
for (int i = 2; i <= cap; i++) {
|
||||||
if (arr[i] == 1) {
|
if (numbers[i] == Type.PRIME) {
|
||||||
for (int j = 2; i * j <= n; j++) {
|
for (int j = 2; i * j <= n; j++) {
|
||||||
arr[i * j] = 0;
|
numbers[i * j] = Type.NOT_PRIME;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//Write all primes to result array
|
||||||
|
int primesCount = (int) Arrays.stream(numbers)
|
||||||
|
.filter(element -> element == Type.PRIME)
|
||||||
|
.count();
|
||||||
|
int[] primes = new int[primesCount];
|
||||||
|
|
||||||
|
int primeIndex = 0;
|
||||||
for (int i = 0; i < n + 1; i++) {
|
for (int i = 0; i < n + 1; i++) {
|
||||||
if (arr[i] == 1) {
|
if(numbers[i] == Type.PRIME) {
|
||||||
System.out.print(i + " ");
|
primes[primeIndex++] = i;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
System.out.println();
|
return primes;
|
||||||
|
}
|
||||||
|
|
||||||
|
private enum Type {
|
||||||
|
PRIME, NOT_PRIME
|
||||||
}
|
}
|
||||||
|
|
||||||
// Driver Program
|
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
int n = 100;
|
int n = 100;
|
||||||
|
System.out.println("Searching for all primes from zero to " + n);
|
||||||
// Prints 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
|
int[] primes = findPrimesTill(n);
|
||||||
findPrimesTillN(n);
|
System.out.println("Found: " + Arrays.toString(primes));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user