Inverse Of a Square Matrix [Hacktoberfest] (#2582)
Co-authored-by: Andrii Siriak <siryaka@gmail.com>
This commit is contained in:
parent
eaf5395272
commit
b6dc9617f6
131
Misc/InverseOfMatrix.java
Normal file
131
Misc/InverseOfMatrix.java
Normal file
@ -0,0 +1,131 @@
|
||||
package Misc;
|
||||
import java.util.Scanner;
|
||||
|
||||
/*
|
||||
* Wikipedia link : https://en.wikipedia.org/wiki/Invertible_matrix
|
||||
*
|
||||
* Here we use gauss elimination method to find the inverse of a given matrix.
|
||||
* To understand gauss elimination method to find inverse of a matrix: https://www.sangakoo.com/en/unit/inverse-matrix-method-of-gaussian-elimination
|
||||
*
|
||||
* We can also find the inverse of a matrix
|
||||
*/
|
||||
public class InverseOfMatrix
|
||||
{
|
||||
public static void main(String argv[])
|
||||
{
|
||||
Scanner input = new Scanner(System.in);
|
||||
System.out.println("Enter the matrix size (Square matrix only): ");
|
||||
int n = input.nextInt();
|
||||
double a[][]= new double[n][n];
|
||||
System.out.println("Enter the elements of matrix: ");
|
||||
for(int i=0; i<n; i++)
|
||||
for(int j=0; j<n; j++)
|
||||
a[i][j] = input.nextDouble();
|
||||
|
||||
double d[][] = invert(a);
|
||||
System.out.println();
|
||||
System.out.println("The inverse is: ");
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
for (int j=0; j<n; ++j)
|
||||
{
|
||||
System.out.print(d[i][j]+" ");
|
||||
}
|
||||
System.out.println();
|
||||
}
|
||||
input.close();
|
||||
}
|
||||
|
||||
public static double[][] invert(double a[][])
|
||||
{
|
||||
int n = a.length;
|
||||
double x[][] = new double[n][n];
|
||||
double b[][] = new double[n][n];
|
||||
int index[] = new int[n];
|
||||
for (int i=0; i<n; ++i)
|
||||
b[i][i] = 1;
|
||||
|
||||
// Transform the matrix into an upper triangle
|
||||
gaussian(a, index);
|
||||
|
||||
// Update the matrix b[i][j] with the ratios stored
|
||||
for (int i=0; i<n-1; ++i)
|
||||
for (int j=i+1; j<n; ++j)
|
||||
for (int k=0; k<n; ++k)
|
||||
b[index[j]][k]
|
||||
-= a[index[j]][i]*b[index[i]][k];
|
||||
|
||||
// Perform backward substitutions
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
x[n-1][i] = b[index[n-1]][i]/a[index[n-1]][n-1];
|
||||
for (int j=n-2; j>=0; --j)
|
||||
{
|
||||
x[j][i] = b[index[j]][i];
|
||||
for (int k=j+1; k<n; ++k)
|
||||
{
|
||||
x[j][i] -= a[index[j]][k]*x[k][i];
|
||||
}
|
||||
x[j][i] /= a[index[j]][j];
|
||||
}
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
// Method to carry out the partial-pivoting Gaussian
|
||||
// elimination. Here index[] stores pivoting order.
|
||||
|
||||
public static void gaussian(double a[][], int index[])
|
||||
{
|
||||
int n = index.length;
|
||||
double c[] = new double[n];
|
||||
|
||||
// Initialize the index
|
||||
for (int i=0; i<n; ++i)
|
||||
index[i] = i;
|
||||
|
||||
// Find the rescaling factors, one from each row
|
||||
for (int i=0; i<n; ++i)
|
||||
{
|
||||
double c1 = 0;
|
||||
for (int j=0; j<n; ++j)
|
||||
{
|
||||
double c0 = Math.abs(a[i][j]);
|
||||
if (c0 > c1) c1 = c0;
|
||||
}
|
||||
c[i] = c1;
|
||||
}
|
||||
|
||||
// Search the pivoting element from each column
|
||||
int k = 0;
|
||||
for (int j=0; j<n-1; ++j)
|
||||
{
|
||||
double pi1 = 0;
|
||||
for (int i=j; i<n; ++i)
|
||||
{
|
||||
double pi0 = Math.abs(a[index[i]][j]);
|
||||
pi0 /= c[index[i]];
|
||||
if (pi0 > pi1)
|
||||
{
|
||||
pi1 = pi0;
|
||||
k = i;
|
||||
}
|
||||
}
|
||||
// Interchange rows according to the pivoting order
|
||||
int itmp = index[j];
|
||||
index[j] = index[k];
|
||||
index[k] = itmp;
|
||||
for (int i=j+1; i<n; ++i)
|
||||
{
|
||||
double pj = a[index[i]][j]/a[index[j]][j];
|
||||
|
||||
// Record pivoting ratios below the diagonal
|
||||
a[index[i]][j] = pj;
|
||||
|
||||
// Modify other elements accordingly
|
||||
for (int l=j+1; l<n; ++l)
|
||||
a[index[i]][l] -= pj*a[index[j]][l];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user