From c396b98fd7ae3e5aa4724a620fe71141b759664a Mon Sep 17 00:00:00 2001 From: ggkogkou <76820848+ggkogkou@users.noreply.github.com> Date: Sun, 24 Oct 2021 10:24:30 +0300 Subject: [PATCH] Add Simpson's integration numerical method (#2681) Co-authored-by: ggkogkou --- Maths/SimpsonIntegration.java | 92 +++++++++++++++++++++++++++++++++++ 1 file changed, 92 insertions(+) create mode 100644 Maths/SimpsonIntegration.java diff --git a/Maths/SimpsonIntegration.java b/Maths/SimpsonIntegration.java new file mode 100644 index 00000000..87a7e4d2 --- /dev/null +++ b/Maths/SimpsonIntegration.java @@ -0,0 +1,92 @@ +package Maths; + +import java.util.TreeMap; + +public class SimpsonIntegration{ + + /* + * Calculate definite integrals by using Composite Simpson's rule. + * Wiki: https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule + * Given f a function and an even number N of intervals that divide the integration interval e.g. [a, b], + * we calculate the step h = (b-a)/N and create a table that contains all the x points of + * the real axis xi = x0 + i*h and the value f(xi) that corresponds to these xi. + * + * To evaluate the integral i use the formula below: + * I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + 4*f(x3) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)} + * + */ + + public static void main(String[] args) { + SimpsonIntegration integration = new SimpsonIntegration(); + + // Give random data for the example purposes + int N = 16; + double a = 1; + double b = 3; + + // Check so that N is even + if(N%2 != 0){ + System.out.println("N must be even number for Simpsons method. Aborted"); + System.exit(1); + } + + // Calculate step h and evaluate the integral + double h = (b-a) / (double) N; + double integralEvaluation = integration.simpsonsMethod(N, h, a); + System.out.println("The integral is equal to: " + integralEvaluation); + } + + /* + * @param N: Number of intervals (must be even number N=2*k) + * @param h: Step h = (b-a)/N + * @param a: Starting point of the interval + * @param b: Ending point of the interval + * + * The interpolation points xi = x0 + i*h are stored the treeMap data + * + * @return result of the integral evaluation + */ + public double simpsonsMethod(int N, double h, double a){ + TreeMap data = new TreeMap<>(); // Key: i, Value: f(xi) + double temp; + double xi = a; // Initialize the variable xi = x0 + 0*h + + // Create the table of xi and yi points + for(int i=0; i<=N; i++){ + temp = f(xi); // Get the value of the function at that point + data.put(i, temp); + xi += h; // Increase the xi to the next point + } + + // Apply the formula + double integralEvaluation = 0; + for(int i=0; i