Merge branch 'master' of https://github.com/TheAlgorithms/Java into node-find-fix
This commit is contained in:
commit
edc51cb1e9
62
Dynamic Programming/LongestIncreasingSubsequence.java
Normal file
62
Dynamic Programming/LongestIncreasingSubsequence.java
Normal file
@ -0,0 +1,62 @@
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Afrizal Fikri (https://github.com/icalF)
|
||||
*
|
||||
*/
|
||||
public class LongestIncreasingSubsequence {
|
||||
public static void main(String[] args) throws Exception {
|
||||
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
|
||||
int ar[] = new int[n];
|
||||
for (int i = 0; i < n; i++) {
|
||||
ar[i] = sc.nextInt();
|
||||
}
|
||||
|
||||
System.out.println(LIS(ar));
|
||||
}
|
||||
|
||||
private static int upperBound(int[] ar, int l, int r, int key) {
|
||||
while (l < r-1) {
|
||||
int m = (l + r) / 2;
|
||||
if (ar[m] >= key)
|
||||
r = m;
|
||||
else
|
||||
l = m;
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
public static int LIS(int[] array) {
|
||||
int N = array.length;
|
||||
if (N == 0)
|
||||
return 0;
|
||||
|
||||
int[] tail = new int[N];
|
||||
int length = 1; // always points empty slot in tail
|
||||
|
||||
tail[0] = array[0];
|
||||
for (int i = 1; i < N; i++) {
|
||||
|
||||
// new smallest value
|
||||
if (array[i] < tail[0])
|
||||
tail[0] = array[i];
|
||||
|
||||
// array[i] extends largest subsequence
|
||||
else if (array[i] > tail[length-1])
|
||||
tail[length++] = array[i];
|
||||
|
||||
// array[i] will become end candidate of an existing subsequence or
|
||||
// Throw away larger elements in all LIS, to make room for upcoming grater elements than array[i]
|
||||
// (and also, array[i] would have already appeared in one of LIS, identify the location and replace it)
|
||||
else
|
||||
tail[upperBound(tail, -1, length-1, array[i])] = array[i];
|
||||
}
|
||||
|
||||
return length;
|
||||
}
|
||||
}
|
144
Misc/LowestBasePalindrome.java
Normal file
144
Misc/LowestBasePalindrome.java
Normal file
@ -0,0 +1,144 @@
|
||||
import java.util.InputMismatchException;
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
* Class for finding the lowest base in which a given integer is a palindrome.
|
||||
* Includes auxiliary methods for converting between bases and reversing strings.
|
||||
*
|
||||
* NOTE: There is potential for error, see note at line 63.
|
||||
*
|
||||
* @author RollandMichael
|
||||
* @version 2017.09.28
|
||||
*
|
||||
*/
|
||||
public class LowestBasePalindrome {
|
||||
|
||||
public static void main(String[] args) {
|
||||
Scanner in = new Scanner(System.in);
|
||||
int n=0;
|
||||
while (true) {
|
||||
try {
|
||||
System.out.print("Enter number: ");
|
||||
n = in.nextInt();
|
||||
break;
|
||||
} catch (InputMismatchException e) {
|
||||
System.out.println("Invalid input!");
|
||||
in.next();
|
||||
}
|
||||
}
|
||||
System.out.println(n+" is a palindrome in base "+lowestBasePalindrome(n));
|
||||
System.out.println(base2base(Integer.toString(n),10, lowestBasePalindrome(n)));
|
||||
}
|
||||
|
||||
/**
|
||||
* Given a number in base 10, returns the lowest base in which the
|
||||
* number is represented by a palindrome (read the same left-to-right
|
||||
* and right-to-left).
|
||||
* @param num A number in base 10.
|
||||
* @return The lowest base in which num is a palindrome.
|
||||
*/
|
||||
public static int lowestBasePalindrome(int num) {
|
||||
int base, num2=num;
|
||||
int digit;
|
||||
char digitC;
|
||||
boolean foundBase=false;
|
||||
String newNum = "";
|
||||
String digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
||||
|
||||
while (!foundBase) {
|
||||
// Try from bases 2 to num (any number n in base n is 1)
|
||||
for (base=2; base<num2; base++) {
|
||||
newNum="";
|
||||
while(num>0) {
|
||||
// Obtain the first digit of n in the current base,
|
||||
// which is equivalent to the integer remainder of (n/base).
|
||||
// The next digit is obtained by dividing n by the base and
|
||||
// continuing the process of getting the remainder. This is done
|
||||
// until n is <=0 and the number in the new base is obtained.
|
||||
digit = (num % base);
|
||||
num/=base;
|
||||
// If the digit isn't in the set of [0-9][A-Z] (beyond base 36), its character
|
||||
// form is just its value in ASCII.
|
||||
|
||||
// NOTE: This may cause problems, as the capital letters are ASCII values
|
||||
// 65-90. It may cause false positives when one digit is, for instance 10 and assigned
|
||||
// 'A' from the character array and the other is 65 and also assigned 'A'.
|
||||
|
||||
// Regardless, the character is added to the representation of n
|
||||
// in the current base.
|
||||
if (digit>=digits.length()) {
|
||||
digitC=(char)(digit);
|
||||
newNum+=digitC;
|
||||
continue;
|
||||
}
|
||||
newNum+=digits.charAt(digit);
|
||||
}
|
||||
// Num is assigned back its original value for the next iteration.
|
||||
num=num2;
|
||||
// Auxiliary method reverses the number.
|
||||
String reverse = reverse(newNum);
|
||||
// If the number is read the same as its reverse, then it is a palindrome.
|
||||
// The current base is returned.
|
||||
if (reverse.equals(newNum)) {
|
||||
foundBase=true;
|
||||
return base;
|
||||
}
|
||||
}
|
||||
}
|
||||
// If all else fails, n is always a palindrome in base n-1. ("11")
|
||||
return num-1;
|
||||
}
|
||||
|
||||
private static String reverse(String str) {
|
||||
String reverse = "";
|
||||
for(int i=str.length()-1; i>=0; i--) {
|
||||
reverse += str.charAt(i);
|
||||
}
|
||||
return reverse;
|
||||
}
|
||||
|
||||
private static String base2base(String n, int b1, int b2) {
|
||||
// Declare variables: decimal value of n,
|
||||
// character of base b1, character of base b2,
|
||||
// and the string that will be returned.
|
||||
int decimalValue = 0, charB2;
|
||||
char charB1;
|
||||
String output="";
|
||||
// Go through every character of n
|
||||
for (int i=0; i<n.length(); i++) {
|
||||
// store the character in charB1
|
||||
charB1 = n.charAt(i);
|
||||
// if it is a non-number, convert it to a decimal value >9 and store it in charB2
|
||||
if (charB1 >= 'A' && charB1 <= 'Z')
|
||||
charB2 = 10 + (charB1 - 'A');
|
||||
// Else, store the integer value in charB2
|
||||
else
|
||||
charB2 = charB1 - '0';
|
||||
// Convert the digit to decimal and add it to the
|
||||
// decimalValue of n
|
||||
decimalValue = decimalValue * b1 + charB2;
|
||||
}
|
||||
|
||||
// Converting the decimal value to base b2:
|
||||
// A number is converted from decimal to another base
|
||||
// by continuously dividing by the base and recording
|
||||
// the remainder until the quotient is zero. The number in the
|
||||
// new base is the remainders, with the last remainder
|
||||
// being the left-most digit.
|
||||
|
||||
// While the quotient is NOT zero:
|
||||
while (decimalValue != 0) {
|
||||
// If the remainder is a digit < 10, simply add it to
|
||||
// the left side of the new number.
|
||||
if (decimalValue % b2 < 10)
|
||||
output = Integer.toString(decimalValue % b2) + output;
|
||||
// If the remainder is >= 10, add a character with the
|
||||
// corresponding value to the new number. (A = 10, B = 11, C = 12, ...)
|
||||
else
|
||||
output = (char)((decimalValue % b2)+55) + output;
|
||||
// Divide by the new base again
|
||||
decimalValue /= b2;
|
||||
}
|
||||
return output;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user