Update SieveOfEratosthenes.java (#4149)
This commit is contained in:
parent
8798e042a8
commit
f35e9a7d81
@ -4,45 +4,24 @@ import java.util.Arrays;
|
||||
|
||||
/**
|
||||
* Sieve of Eratosthenes is an ancient algorithm for finding all prime numbers
|
||||
* up to any given limit. It does so by iteratively marking as composite (i.e.,
|
||||
* not prime) the multiples of each prime, starting with the first prime number,
|
||||
* 2. The multiples of a given prime are generated as a sequence of numbers
|
||||
* starting from that prime, with constant difference between them that is equal
|
||||
* to that prime. This is the sieve's key distinction from using trial division
|
||||
* to sequentially test each candidate number for divisibility by each prime.
|
||||
* Once all the multiples of each discovered prime have been marked as
|
||||
* composites, the remaining unmarked numbers are primes.
|
||||
* <p>
|
||||
* Poetry about Sieve of Eratosthenes:
|
||||
* <p>
|
||||
* <i>Sift the Two's and Sift the Three's:</i></p>
|
||||
* <p>
|
||||
* <i>The Sieve of Eratosthenes.</i></p>
|
||||
* <p>
|
||||
* <i>When the multiples sublime,</i></p>
|
||||
* <p>
|
||||
* <i>The numbers that remain are Prime.</i></p>
|
||||
* up to any given limit.
|
||||
*
|
||||
* @see <a href="https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes">Wiki</a>
|
||||
*/
|
||||
public class SieveOfEratosthenes {
|
||||
|
||||
/**
|
||||
* @param n The number till which we have to check for prime Prints all the
|
||||
* prime numbers till n. Should be more than 1.
|
||||
* @return array of all prime numbers between 0 to n
|
||||
* Finds all prime numbers till n.
|
||||
*
|
||||
* @param n The number till which we have to check for primes. Should be more than 1.
|
||||
* @return Array of all prime numbers between 0 to n.
|
||||
*/
|
||||
public static int[] findPrimesTill(int n) {
|
||||
// Create array where index is number and value is flag - is that number a prime or not.
|
||||
// size of array is n + 1 cause in Java array indexes starts with 0
|
||||
Type[] numbers = new Type[n + 1];
|
||||
|
||||
// Start with assumption that all numbers except 0 and 1 are primes.
|
||||
Arrays.fill(numbers, Type.PRIME);
|
||||
numbers[0] = numbers[1] = Type.NOT_PRIME;
|
||||
|
||||
double cap = Math.sqrt(n);
|
||||
// Main algorithm: mark all numbers which are multiples of some other values as not prime
|
||||
for (int i = 2; i <= cap; i++) {
|
||||
if (numbers[i] == Type.PRIME) {
|
||||
for (int j = 2; i * j <= n; j++) {
|
||||
@ -51,7 +30,6 @@ public class SieveOfEratosthenes {
|
||||
}
|
||||
}
|
||||
|
||||
//Write all primes to result array
|
||||
int primesCount = (int) Arrays
|
||||
.stream(numbers)
|
||||
.filter(element -> element == Type.PRIME)
|
||||
|
Loading…
Reference in New Issue
Block a user