Formatted with Google Java Formatter
This commit is contained in:
parent
e6fb81d1bb
commit
f981a2b979
@ -4,40 +4,38 @@ package DynamicProgramming;
|
|||||||
of 0-1 Knapsack problem */
|
of 0-1 Knapsack problem */
|
||||||
public class BruteForceKnapsack {
|
public class BruteForceKnapsack {
|
||||||
|
|
||||||
// A utility function that returns
|
// A utility function that returns
|
||||||
// maximum of two integers
|
// maximum of two integers
|
||||||
static int max(int a, int b) {
|
static int max(int a, int b) {
|
||||||
return (a > b) ? a : b;
|
return (a > b) ? a : b;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the maximum value that
|
// Returns the maximum value that
|
||||||
// can be put in a knapsack of
|
// can be put in a knapsack of
|
||||||
// capacity W
|
// capacity W
|
||||||
static int knapSack(int W, int wt[], int val[], int n) {
|
static int knapSack(int W, int wt[], int val[], int n) {
|
||||||
// Base Case
|
// Base Case
|
||||||
if (n == 0 || W == 0)
|
if (n == 0 || W == 0) return 0;
|
||||||
return 0;
|
|
||||||
|
|
||||||
// If weight of the nth item is
|
// If weight of the nth item is
|
||||||
// more than Knapsack capacity W,
|
// more than Knapsack capacity W,
|
||||||
// then this item cannot be included
|
// then this item cannot be included
|
||||||
// in the optimal solution
|
// in the optimal solution
|
||||||
if (wt[n - 1] > W)
|
if (wt[n - 1] > W) return knapSack(W, wt, val, n - 1);
|
||||||
return knapSack(W, wt, val, n - 1);
|
|
||||||
|
|
||||||
// Return the maximum of two cases:
|
// Return the maximum of two cases:
|
||||||
// (1) nth item included
|
// (1) nth item included
|
||||||
// (2) not included
|
// (2) not included
|
||||||
else
|
else
|
||||||
return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));
|
return max(val[n - 1] + knapSack(W - wt[n - 1], wt, val, n - 1), knapSack(W, wt, val, n - 1));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Driver code
|
// Driver code
|
||||||
public static void main(String args[]) {
|
public static void main(String args[]) {
|
||||||
int val[] = new int[] { 60, 100, 120 };
|
int val[] = new int[] {60, 100, 120};
|
||||||
int wt[] = new int[] { 10, 20, 30 };
|
int wt[] = new int[] {10, 20, 30};
|
||||||
int W = 50;
|
int W = 50;
|
||||||
int n = val.length;
|
int n = val.length;
|
||||||
System.out.println(knapSack(W, wt, val, n));
|
System.out.println(knapSack(W, wt, val, n));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -3,37 +3,34 @@ package DynamicProgramming;
|
|||||||
// A Dynamic Programming based solution
|
// A Dynamic Programming based solution
|
||||||
// for 0-1 Knapsack problem
|
// for 0-1 Knapsack problem
|
||||||
public class DyanamicProgrammingKnapsack {
|
public class DyanamicProgrammingKnapsack {
|
||||||
static int max(int a, int b) {
|
static int max(int a, int b) {
|
||||||
return (a > b) ? a : b;
|
return (a > b) ? a : b;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Returns the maximum value that can
|
// Returns the maximum value that can
|
||||||
// be put in a knapsack of capacity W
|
// be put in a knapsack of capacity W
|
||||||
static int knapSack(int W, int wt[], int val[], int n) {
|
static int knapSack(int W, int wt[], int val[], int n) {
|
||||||
int i, w;
|
int i, w;
|
||||||
int K[][] = new int[n + 1][W + 1];
|
int K[][] = new int[n + 1][W + 1];
|
||||||
|
|
||||||
// Build table K[][] in bottom up manner
|
// Build table K[][] in bottom up manner
|
||||||
for (i = 0; i <= n; i++) {
|
for (i = 0; i <= n; i++) {
|
||||||
for (w = 0; w <= W; w++) {
|
for (w = 0; w <= W; w++) {
|
||||||
if (i == 0 || w == 0)
|
if (i == 0 || w == 0) K[i][w] = 0;
|
||||||
K[i][w] = 0;
|
else if (wt[i - 1] <= w) K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
|
||||||
else if (wt[i - 1] <= w)
|
else K[i][w] = K[i - 1][w];
|
||||||
K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
|
}
|
||||||
else
|
}
|
||||||
K[i][w] = K[i - 1][w];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return K[n][W];
|
return K[n][W];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Driver code
|
// Driver code
|
||||||
public static void main(String args[]) {
|
public static void main(String args[]) {
|
||||||
int val[] = new int[] { 60, 100, 120 };
|
int val[] = new int[] {60, 100, 120};
|
||||||
int wt[] = new int[] { 10, 20, 30 };
|
int wt[] = new int[] {10, 20, 30};
|
||||||
int W = 50;
|
int W = 50;
|
||||||
int n = val.length;
|
int n = val.length;
|
||||||
System.out.println(knapSack(W, wt, val, n));
|
System.out.println(knapSack(W, wt, val, n));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,59 +1,56 @@
|
|||||||
package DynamicProgramming;
|
package DynamicProgramming;
|
||||||
// Here is the top-down approach of
|
// Here is the top-down approach of
|
||||||
// dynamic programming
|
// dynamic programming
|
||||||
public class MemoizationTechniqueKnapsack {
|
public class MemoizationTechniqueKnapsack {
|
||||||
|
|
||||||
//A utility function that returns
|
// A utility function that returns
|
||||||
//maximum of two integers
|
// maximum of two integers
|
||||||
static int max(int a, int b) {
|
static int max(int a, int b) {
|
||||||
return (a > b) ? a : b;
|
return (a > b) ? a : b;
|
||||||
}
|
}
|
||||||
|
|
||||||
//Returns the value of maximum profit
|
// Returns the value of maximum profit
|
||||||
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
|
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
|
||||||
|
|
||||||
// Base condition
|
// Base condition
|
||||||
if (n == 0 || W == 0)
|
if (n == 0 || W == 0) return 0;
|
||||||
return 0;
|
|
||||||
|
|
||||||
if (dp[n][W] != -1)
|
if (dp[n][W] != -1) return dp[n][W];
|
||||||
return dp[n][W];
|
|
||||||
|
|
||||||
if (wt[n - 1] > W)
|
if (wt[n - 1] > W)
|
||||||
|
|
||||||
// Store the value of function call
|
// Store the value of function call
|
||||||
// stack in table before return
|
// stack in table before return
|
||||||
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
|
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
|
||||||
|
else
|
||||||
|
|
||||||
else
|
// Return value of table after storing
|
||||||
|
return dp[n][W] =
|
||||||
|
max(
|
||||||
|
(val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
||||||
|
knapSackRec(W, wt, val, n - 1, dp));
|
||||||
|
}
|
||||||
|
|
||||||
// Return value of table after storing
|
static int knapSack(int W, int wt[], int val[], int N) {
|
||||||
return dp[n][W] = max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
|
||||||
knapSackRec(W, wt, val, n - 1, dp));
|
|
||||||
}
|
|
||||||
|
|
||||||
static int knapSack(int W, int wt[], int val[], int N) {
|
// Declare the table dynamically
|
||||||
|
int dp[][] = new int[N + 1][W + 1];
|
||||||
|
|
||||||
// Declare the table dynamically
|
// Loop to initially filled the
|
||||||
int dp[][] = new int[N + 1][W + 1];
|
// table with -1
|
||||||
|
for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i][j] = -1;
|
||||||
|
|
||||||
// Loop to initially filled the
|
return knapSackRec(W, wt, val, N, dp);
|
||||||
// table with -1
|
}
|
||||||
for (int i = 0; i < N + 1; i++)
|
|
||||||
for (int j = 0; j < W + 1; j++)
|
|
||||||
dp[i][j] = -1;
|
|
||||||
|
|
||||||
return knapSackRec(W, wt, val, N, dp);
|
// Driver Code
|
||||||
}
|
public static void main(String[] args) {
|
||||||
|
int val[] = {60, 100, 120};
|
||||||
|
int wt[] = {10, 20, 30};
|
||||||
|
|
||||||
//Driver Code
|
int W = 50;
|
||||||
public static void main(String[] args) {
|
int N = val.length;
|
||||||
int val[] = { 60, 100, 120 };
|
|
||||||
int wt[] = { 10, 20, 30 };
|
|
||||||
|
|
||||||
int W = 50;
|
System.out.println(knapSack(W, wt, val, N));
|
||||||
int N = val.length;
|
}
|
||||||
|
|
||||||
System.out.println(knapSack(W, wt, val, N));
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user