Compare commits
1 Commits
master
...
cipher-pac
Author | SHA1 | Date | |
---|---|---|---|
|
b159835878 |
1160
Ciphers/AES.java
1160
Ciphers/AES.java
File diff suppressed because it is too large
Load Diff
@ -1,13 +1,8 @@
|
|||||||
package Ciphers;
|
package Ciphers;
|
||||||
|
|
||||||
|
import javax.crypto.*;
|
||||||
import java.security.InvalidKeyException;
|
import java.security.InvalidKeyException;
|
||||||
import java.security.NoSuchAlgorithmException;
|
import java.security.NoSuchAlgorithmException;
|
||||||
import javax.crypto.BadPaddingException;
|
|
||||||
import javax.crypto.Cipher;
|
|
||||||
import javax.crypto.IllegalBlockSizeException;
|
|
||||||
import javax.crypto.KeyGenerator;
|
|
||||||
import javax.crypto.NoSuchPaddingException;
|
|
||||||
import javax.crypto.SecretKey;
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This example program shows how AES encryption and decryption can be done in Java. Please note
|
* This example program shows how AES encryption and decryption can be done in Java. Please note
|
||||||
@ -16,82 +11,83 @@ import javax.crypto.SecretKey;
|
|||||||
*/
|
*/
|
||||||
public class AESEncryption {
|
public class AESEncryption {
|
||||||
|
|
||||||
private static final char[] HEX_ARRAY = "0123456789ABCDEF".toCharArray();
|
private static final char[] HEX_ARRAY = "0123456789ABCDEF".toCharArray();
|
||||||
/**
|
|
||||||
* 1. Generate a plain text for encryption 2. Get a secret key (printed in hexadecimal form). In
|
|
||||||
* actual use this must by encrypted and kept safe. The same key is required for decryption.
|
|
||||||
*/
|
|
||||||
public static void main(String[] args) throws Exception {
|
|
||||||
String plainText = "Hello World";
|
|
||||||
SecretKey secKey = getSecretEncryptionKey();
|
|
||||||
byte[] cipherText = encryptText(plainText, secKey);
|
|
||||||
String decryptedText = decryptText(cipherText, secKey);
|
|
||||||
|
|
||||||
System.out.println("Original Text:" + plainText);
|
/**
|
||||||
System.out.println("AES Key (Hex Form):" + bytesToHex(secKey.getEncoded()));
|
* 1. Generate a plain text for encryption 2. Get a secret key (printed in hexadecimal form). In
|
||||||
System.out.println("Encrypted Text (Hex Form):" + bytesToHex(cipherText));
|
* actual use this must by encrypted and kept safe. The same key is required for decryption.
|
||||||
System.out.println("Descrypted Text:" + decryptedText);
|
*/
|
||||||
}
|
public static void main(String[] args) throws Exception {
|
||||||
|
String plainText = "Hello World";
|
||||||
|
SecretKey secKey = getSecretEncryptionKey();
|
||||||
|
byte[] cipherText = encryptText(plainText, secKey);
|
||||||
|
String decryptedText = decryptText(cipherText, secKey);
|
||||||
|
|
||||||
/**
|
System.out.println("Original Text:" + plainText);
|
||||||
* gets the AES encryption key. In your actual programs, this should be safely stored.
|
System.out.println("AES Key (Hex Form):" + bytesToHex(secKey.getEncoded()));
|
||||||
*
|
System.out.println("Encrypted Text (Hex Form):" + bytesToHex(cipherText));
|
||||||
* @return secKey (Secret key that we encrypt using it)
|
System.out.println("Descrypted Text:" + decryptedText);
|
||||||
* @throws NoSuchAlgorithmException (from KeyGenrator)
|
}
|
||||||
*/
|
|
||||||
public static SecretKey getSecretEncryptionKey() throws NoSuchAlgorithmException {
|
/**
|
||||||
KeyGenerator aesKeyGenerator = KeyGenerator.getInstance("AES");
|
* gets the AES encryption key. In your actual programs, this should be safely stored.
|
||||||
aesKeyGenerator.init(128); // The AES key size in number of bits
|
*
|
||||||
return aesKeyGenerator.generateKey();
|
* @return secKey (Secret key that we encrypt using it)
|
||||||
}
|
* @throws NoSuchAlgorithmException (from KeyGenrator)
|
||||||
|
*/
|
||||||
/**
|
public static SecretKey getSecretEncryptionKey() throws NoSuchAlgorithmException {
|
||||||
* Encrypts plainText in AES using the secret key
|
KeyGenerator aesKeyGenerator = KeyGenerator.getInstance("AES");
|
||||||
*
|
aesKeyGenerator.init(128); // The AES key size in number of bits
|
||||||
* @return byteCipherText (The encrypted text)
|
return aesKeyGenerator.generateKey();
|
||||||
* @throws NoSuchPaddingException (from Cipher)
|
}
|
||||||
* @throws NoSuchAlgorithmException (from Cipher)
|
|
||||||
* @throws InvalidKeyException (from Cipher)
|
/**
|
||||||
* @throws BadPaddingException (from Cipher)
|
* Encrypts plainText in AES using the secret key
|
||||||
* @throws IllegalBlockSizeException (from Cipher)
|
*
|
||||||
*/
|
* @return byteCipherText (The encrypted text)
|
||||||
public static byte[] encryptText(String plainText, SecretKey secKey)
|
* @throws NoSuchPaddingException (from Cipher)
|
||||||
throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException,
|
* @throws NoSuchAlgorithmException (from Cipher)
|
||||||
IllegalBlockSizeException, BadPaddingException {
|
* @throws InvalidKeyException (from Cipher)
|
||||||
// AES defaults to AES/ECB/PKCS5Padding in Java 7
|
* @throws BadPaddingException (from Cipher)
|
||||||
Cipher aesCipher = Cipher.getInstance("AES");
|
* @throws IllegalBlockSizeException (from Cipher)
|
||||||
aesCipher.init(Cipher.ENCRYPT_MODE, secKey);
|
*/
|
||||||
return aesCipher.doFinal(plainText.getBytes());
|
public static byte[] encryptText(String plainText, SecretKey secKey)
|
||||||
}
|
throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException,
|
||||||
|
IllegalBlockSizeException, BadPaddingException {
|
||||||
/**
|
// AES defaults to AES/ECB/PKCS5Padding in Java 7
|
||||||
* Decrypts encrypted byte array using the key used for encryption.
|
Cipher aesCipher = Cipher.getInstance("AES");
|
||||||
*
|
aesCipher.init(Cipher.ENCRYPT_MODE, secKey);
|
||||||
* @return plainText
|
return aesCipher.doFinal(plainText.getBytes());
|
||||||
*/
|
}
|
||||||
public static String decryptText(byte[] byteCipherText, SecretKey secKey)
|
|
||||||
throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException,
|
/**
|
||||||
IllegalBlockSizeException, BadPaddingException {
|
* Decrypts encrypted byte array using the key used for encryption.
|
||||||
// AES defaults to AES/ECB/PKCS5Padding in Java 7
|
*
|
||||||
Cipher aesCipher = Cipher.getInstance("AES");
|
* @return plainText
|
||||||
aesCipher.init(Cipher.DECRYPT_MODE, secKey);
|
*/
|
||||||
byte[] bytePlainText = aesCipher.doFinal(byteCipherText);
|
public static String decryptText(byte[] byteCipherText, SecretKey secKey)
|
||||||
return new String(bytePlainText);
|
throws NoSuchAlgorithmException, NoSuchPaddingException, InvalidKeyException,
|
||||||
}
|
IllegalBlockSizeException, BadPaddingException {
|
||||||
|
// AES defaults to AES/ECB/PKCS5Padding in Java 7
|
||||||
/**
|
Cipher aesCipher = Cipher.getInstance("AES");
|
||||||
* Convert a binary byte array into readable hex form Old library is deprecated on OpenJdk 11 and
|
aesCipher.init(Cipher.DECRYPT_MODE, secKey);
|
||||||
* this is faster regarding other solution is using StringBuilder
|
byte[] bytePlainText = aesCipher.doFinal(byteCipherText);
|
||||||
*
|
return new String(bytePlainText);
|
||||||
* @return hexHash
|
}
|
||||||
*/
|
|
||||||
public static String bytesToHex(byte[] bytes) {
|
/**
|
||||||
char[] hexChars = new char[bytes.length * 2];
|
* Convert a binary byte array into readable hex form Old library is deprecated on OpenJdk 11 and
|
||||||
for (int j = 0; j < bytes.length; j++) {
|
* this is faster regarding other solution is using StringBuilder
|
||||||
int v = bytes[j] & 0xFF;
|
*
|
||||||
hexChars[j * 2] = HEX_ARRAY[v >>> 4];
|
* @return hexHash
|
||||||
hexChars[j * 2 + 1] = HEX_ARRAY[v & 0x0F];
|
*/
|
||||||
|
public static String bytesToHex(byte[] bytes) {
|
||||||
|
char[] hexChars = new char[bytes.length * 2];
|
||||||
|
for (int j = 0; j < bytes.length; j++) {
|
||||||
|
int v = bytes[j] & 0xFF;
|
||||||
|
hexChars[j * 2] = HEX_ARRAY[v >>> 4];
|
||||||
|
hexChars[j * 2 + 1] = HEX_ARRAY[v & 0x0F];
|
||||||
|
}
|
||||||
|
return new String(hexChars);
|
||||||
}
|
}
|
||||||
return new String(hexChars);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -1,36 +1,23 @@
|
|||||||
//The ‘key’ for the Affine cipher consists of 2 numbers, we’ll call them a and b.
|
|
||||||
// The following discussion assumes the use of a 26 character alphabet (m = 26).
|
|
||||||
// a should be chosen to be relatively prime to m (i.e. a should have no factors in common with m).
|
|
||||||
|
|
||||||
package Ciphers;
|
package Ciphers;
|
||||||
|
|
||||||
import java.util.Scanner;
|
class AffineCipher {
|
||||||
|
|
||||||
class AffineCipher
|
// Key values of a and b
|
||||||
{
|
static int a = 17;
|
||||||
static Scanner in = new Scanner(System.in);
|
static int b = 20;
|
||||||
|
|
||||||
static String encryptMessage(char[] msg)
|
static String encryptMessage(char[] msg) {
|
||||||
{
|
/// Cipher Text initially empty
|
||||||
System.out.println("Enter key value a for encryption : ");
|
|
||||||
int a = in.nextInt();
|
|
||||||
|
|
||||||
System.out.println("Enter key value b for encryption : ");
|
|
||||||
int b = in.nextInt();
|
|
||||||
|
|
||||||
/// Initially empty cipher String
|
|
||||||
String cipher = "";
|
String cipher = "";
|
||||||
for (int i = 0; i < msg.length; i++)
|
for (int i = 0; i < msg.length; i++) {
|
||||||
{
|
|
||||||
// Avoid space to be encrypted
|
// Avoid space to be encrypted
|
||||||
/* applying encryption formula ( a x + b ) mod m
|
/* applying encryption formula ( a x + b ) mod m
|
||||||
{here x is msg[i] and m is 26} and added 'A' to
|
{here x is msg[i] and m is 26} and added 'A' to
|
||||||
bring it in range of ascii alphabet[ 65-90 | A-Z ] */
|
bring it in range of ascii alphabet[ 65-90 | A-Z ] */
|
||||||
if (msg[i] != ' ')
|
if (msg[i] != ' ') {
|
||||||
{
|
|
||||||
cipher = cipher
|
cipher = cipher
|
||||||
+ (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A');
|
+ (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A');
|
||||||
} else // append space character
|
} else // else simply append space character
|
||||||
{
|
{
|
||||||
cipher += msg[i];
|
cipher += msg[i];
|
||||||
}
|
}
|
||||||
@ -38,42 +25,30 @@ class AffineCipher
|
|||||||
return cipher;
|
return cipher;
|
||||||
}
|
}
|
||||||
|
|
||||||
static String decryptCipher(String cipher)
|
static String decryptCipher(String cipher) {
|
||||||
{
|
|
||||||
System.out.println("Enter key value a for decryption : ");
|
|
||||||
int a = in.nextInt();
|
|
||||||
|
|
||||||
System.out.println("Enter key value b for decryption : ");
|
|
||||||
int b = in.nextInt();
|
|
||||||
|
|
||||||
String msg = "";
|
String msg = "";
|
||||||
int a_inv = 0;
|
int a_inv = 0;
|
||||||
int flag = 0;
|
int flag = 0;
|
||||||
|
|
||||||
//Find a^-1 (the multiplicative inverse of a
|
//Find a^-1 (the multiplicative inverse of a
|
||||||
//in the group of integers modulo m.)
|
//in the group of integers modulo m.)
|
||||||
for (int i = 0; i < 26; i++)
|
for (int i = 0; i < 26; i++) {
|
||||||
{
|
|
||||||
flag = (a * i) % 26;
|
flag = (a * i) % 26;
|
||||||
|
|
||||||
// Check if (a*i)%26 == 1,
|
// Check if (a*i)%26 == 1,
|
||||||
// if so, then i will be the multiplicative inverse of a
|
// then i will be the multiplicative inverse of a
|
||||||
if (flag == 1)
|
if (flag == 1) {
|
||||||
{
|
|
||||||
a_inv = i;
|
a_inv = i;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (int i = 0; i < cipher.length(); i++)
|
for (int i = 0; i < cipher.length(); i++) {
|
||||||
{
|
|
||||||
/*Applying decryption formula a^-1 ( x - b ) mod m
|
/*Applying decryption formula a^-1 ( x - b ) mod m
|
||||||
{here x is cipher[i] and m is 26} and added 'A'
|
{here x is cipher[i] and m is 26} and added 'A'
|
||||||
to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */
|
to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */
|
||||||
if (cipher.charAt(i) != ' ')
|
if (cipher.charAt(i) != ' ') {
|
||||||
{
|
|
||||||
msg = msg + (char) (((a_inv *
|
msg = msg + (char) (((a_inv *
|
||||||
((cipher.charAt(i) + 'A' - b)) % 26)) + 'A');
|
((cipher.charAt(i) + 'A' - b)) % 26)) + 'A');
|
||||||
}
|
} else //else simply append space character
|
||||||
else // append space character
|
|
||||||
{
|
{
|
||||||
msg += cipher.charAt(i);
|
msg += cipher.charAt(i);
|
||||||
}
|
}
|
||||||
@ -82,17 +57,17 @@ class AffineCipher
|
|||||||
return msg;
|
return msg;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Main method
|
// Driver code
|
||||||
public static void main(String[] args)
|
public static void main(String[] args) {
|
||||||
{
|
|
||||||
String msg = "AFFINE CIPHER";
|
String msg = "AFFINE CIPHER";
|
||||||
|
|
||||||
// Encrypting message
|
// Calling encryption function
|
||||||
String cipherText = encryptMessage(msg.toCharArray());
|
String cipherText = encryptMessage(msg.toCharArray());
|
||||||
System.out.println("Encrypted Message is : " + cipherText);
|
System.out.println("Encrypted Message is : " + cipherText);
|
||||||
|
|
||||||
// Decrypting message
|
// Calling Decryption function
|
||||||
System.out.println("Decrypted Message is: " + decryptCipher(cipherText));
|
System.out.println("Decrypted Message is: " + decryptCipher(cipherText));
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -11,105 +11,105 @@ import java.util.Scanner;
|
|||||||
*/
|
*/
|
||||||
public class Caesar {
|
public class Caesar {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Encrypt text by shifting every Latin char by add number shift for ASCII Example : A + 1 -> B
|
* Encrypt text by shifting every Latin char by add number shift for ASCII Example : A + 1 -> B
|
||||||
*
|
*
|
||||||
* @return Encrypted message
|
* @return Encrypted message
|
||||||
*/
|
*/
|
||||||
public static String encode(String message, int shift) {
|
public static String encode(String message, int shift) {
|
||||||
StringBuilder encoded = new StringBuilder();
|
StringBuilder encoded = new StringBuilder();
|
||||||
|
|
||||||
shift %= 26;
|
shift %= 26;
|
||||||
|
|
||||||
final int length = message.length();
|
final int length = message.length();
|
||||||
for (int i = 0; i < length; i++) {
|
for (int i = 0; i < length; i++) {
|
||||||
|
|
||||||
// int current = message.charAt(i); //using char to shift characters because ascii
|
// int current = message.charAt(i); //using char to shift characters because ascii
|
||||||
// is in-order latin alphabet
|
// is in-order latin alphabet
|
||||||
char current = message.charAt(i); // Java law : char + int = char
|
char current = message.charAt(i); // Java law : char + int = char
|
||||||
|
|
||||||
if (IsCapitalLatinLetter(current)) {
|
if (IsCapitalLatinLetter(current)) {
|
||||||
|
|
||||||
current += shift;
|
current += shift;
|
||||||
encoded.append((char) (current > 'Z' ? current - 26 : current)); // 26 = number of latin letters
|
encoded.append((char) (current > 'Z' ? current - 26 : current)); // 26 = number of latin letters
|
||||||
|
|
||||||
} else if (IsSmallLatinLetter(current)) {
|
} else if (IsSmallLatinLetter(current)) {
|
||||||
|
|
||||||
current += shift;
|
current += shift;
|
||||||
encoded.append((char) (current > 'z' ? current - 26 : current)); // 26 = number of latin letters
|
encoded.append((char) (current > 'z' ? current - 26 : current)); // 26 = number of latin letters
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
encoded.append(current);
|
encoded.append(current);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
return encoded.toString();
|
||||||
}
|
}
|
||||||
return encoded.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Decrypt message by shifting back every Latin char to previous the ASCII Example : B - 1 -> A
|
* Decrypt message by shifting back every Latin char to previous the ASCII Example : B - 1 -> A
|
||||||
*
|
*
|
||||||
* @return message
|
* @return message
|
||||||
*/
|
*/
|
||||||
public static String decode(String encryptedMessage, int shift) {
|
public static String decode(String encryptedMessage, int shift) {
|
||||||
StringBuilder decoded = new StringBuilder();
|
StringBuilder decoded = new StringBuilder();
|
||||||
|
|
||||||
shift %= 26;
|
shift %= 26;
|
||||||
|
|
||||||
final int length = encryptedMessage.length();
|
final int length = encryptedMessage.length();
|
||||||
for (int i = 0; i < length; i++) {
|
for (int i = 0; i < length; i++) {
|
||||||
char current = encryptedMessage.charAt(i);
|
char current = encryptedMessage.charAt(i);
|
||||||
if (IsCapitalLatinLetter(current)) {
|
if (IsCapitalLatinLetter(current)) {
|
||||||
|
|
||||||
current -= shift;
|
current -= shift;
|
||||||
decoded.append((char) (current < 'A' ? current + 26 : current)); // 26 = number of latin letters
|
decoded.append((char) (current < 'A' ? current + 26 : current)); // 26 = number of latin letters
|
||||||
|
|
||||||
} else if (IsSmallLatinLetter(current)) {
|
} else if (IsSmallLatinLetter(current)) {
|
||||||
|
|
||||||
current -= shift;
|
current -= shift;
|
||||||
decoded.append((char) (current < 'a' ? current + 26 : current)); // 26 = number of latin letters
|
decoded.append((char) (current < 'a' ? current + 26 : current)); // 26 = number of latin letters
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
decoded.append(current);
|
decoded.append(current);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
return decoded.toString();
|
||||||
}
|
}
|
||||||
return decoded.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @return true if character is capital Latin letter or false for others
|
* @return true if character is capital Latin letter or false for others
|
||||||
*/
|
*/
|
||||||
private static boolean IsCapitalLatinLetter(char c) {
|
private static boolean IsCapitalLatinLetter(char c) {
|
||||||
return c >= 'A' && c <= 'Z';
|
return c >= 'A' && c <= 'Z';
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @return true if character is small Latin letter or false for others
|
* @return true if character is small Latin letter or false for others
|
||||||
*/
|
*/
|
||||||
private static boolean IsSmallLatinLetter(char c) {
|
private static boolean IsSmallLatinLetter(char c) {
|
||||||
return c >= 'a' && c <= 'z';
|
return c >= 'a' && c <= 'z';
|
||||||
}
|
}
|
||||||
|
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
Scanner input = new Scanner(System.in);
|
Scanner input = new Scanner(System.in);
|
||||||
System.out.println("Please enter the message (Latin Alphabet)");
|
System.out.println("Please enter the message (Latin Alphabet)");
|
||||||
String message = input.nextLine();
|
String message = input.nextLine();
|
||||||
System.out.println(message);
|
System.out.println(message);
|
||||||
System.out.println("Please enter the shift number");
|
System.out.println("Please enter the shift number");
|
||||||
int shift = input.nextInt() % 26;
|
int shift = input.nextInt() % 26;
|
||||||
System.out.println("(E)ncode or (D)ecode ?");
|
System.out.println("(E)ncode or (D)ecode ?");
|
||||||
char choice = input.next().charAt(0);
|
char choice = input.next().charAt(0);
|
||||||
switch (choice) {
|
switch (choice) {
|
||||||
case 'E':
|
case 'E':
|
||||||
case 'e':
|
case 'e':
|
||||||
System.out.println(
|
System.out.println(
|
||||||
"ENCODED MESSAGE IS \n" + encode(message, shift)); // send our function to handle
|
"ENCODED MESSAGE IS \n" + encode(message, shift)); // send our function to handle
|
||||||
break;
|
break;
|
||||||
case 'D':
|
case 'D':
|
||||||
case 'd':
|
case 'd':
|
||||||
System.out.println("DECODED MESSAGE IS \n" + decode(message, shift));
|
System.out.println("DECODED MESSAGE IS \n" + decode(message, shift));
|
||||||
default:
|
default:
|
||||||
System.out.println("default case");
|
System.out.println("default case");
|
||||||
|
}
|
||||||
|
input.close();
|
||||||
}
|
}
|
||||||
input.close();
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -9,191 +9,193 @@ import java.util.Objects;
|
|||||||
*/
|
*/
|
||||||
public class ColumnarTranspositionCipher {
|
public class ColumnarTranspositionCipher {
|
||||||
|
|
||||||
private static String keyword;
|
private static String keyword;
|
||||||
private static Object[][] table;
|
private static Object[][] table;
|
||||||
private static String abecedarium;
|
private static String abecedarium;
|
||||||
public static final String ABECEDARIUM =
|
public static final String ABECEDARIUM =
|
||||||
"abcdefghijklmnopqrstuvwxyzABCDEFG" + "HIJKLMNOPQRSTUVWXYZ0123456789,.;:-@";
|
"abcdefghijklmnopqrstuvwxyzABCDEFG" + "HIJKLMNOPQRSTUVWXYZ0123456789,.;:-@";
|
||||||
private static final String ENCRYPTION_FIELD = "≈";
|
private static final String ENCRYPTION_FIELD = "≈";
|
||||||
private static final char ENCRYPTION_FIELD_CHAR = '≈';
|
private static final char ENCRYPTION_FIELD_CHAR = '≈';
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Encrypts a certain String with the Columnar Transposition Cipher Rule
|
* Encrypts a certain String with the Columnar Transposition Cipher Rule
|
||||||
*
|
*
|
||||||
* @param word Word being encrypted
|
* @param word Word being encrypted
|
||||||
* @param keyword String with keyword being used
|
* @param keyword String with keyword being used
|
||||||
* @return a String with the word encrypted by the Columnar Transposition Cipher Rule
|
* @return a String with the word encrypted by the Columnar Transposition Cipher Rule
|
||||||
*/
|
*/
|
||||||
public static String encrpyter(String word, String keyword) {
|
public static String encrpyter(String word, String keyword) {
|
||||||
ColumnarTranspositionCipher.keyword = keyword;
|
ColumnarTranspositionCipher.keyword = keyword;
|
||||||
abecedariumBuilder(500);
|
abecedariumBuilder(500);
|
||||||
table = tableBuilder(word);
|
table = tableBuilder(word);
|
||||||
Object[][] sortedTable = sortTable(table);
|
Object[][] sortedTable = sortTable(table);
|
||||||
StringBuilder wordEncrypted = new StringBuilder();
|
StringBuilder wordEncrypted = new StringBuilder();
|
||||||
for (int i = 0; i < sortedTable[i].length; i++) {
|
for (int i = 0; i < sortedTable[i].length; i++) {
|
||||||
for (int j = 1; j < sortedTable.length; j++) {
|
for (int j = 1; j < sortedTable.length; j++) {
|
||||||
wordEncrypted.append(sortedTable[j][i]);
|
wordEncrypted.append(sortedTable[j][i]);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
return wordEncrypted.toString();
|
||||||
}
|
}
|
||||||
return wordEncrypted.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Encrypts a certain String with the Columnar Transposition Cipher Rule
|
* Encrypts a certain String with the Columnar Transposition Cipher Rule
|
||||||
*
|
*
|
||||||
* @param word Word being encrypted
|
* @param word Word being encrypted
|
||||||
* @param keyword String with keyword being used
|
* @param keyword String with keyword being used
|
||||||
* @param abecedarium String with the abecedarium being used. null for default one
|
* @param abecedarium String with the abecedarium being used. null for default one
|
||||||
* @return a String with the word encrypted by the Columnar Transposition Cipher Rule
|
* @return a String with the word encrypted by the Columnar Transposition Cipher Rule
|
||||||
*/
|
*/
|
||||||
public static String encrpyter(String word, String keyword, String abecedarium) {
|
public static String encrpyter(String word, String keyword, String abecedarium) {
|
||||||
ColumnarTranspositionCipher.keyword = keyword;
|
ColumnarTranspositionCipher.keyword = keyword;
|
||||||
ColumnarTranspositionCipher.abecedarium = Objects.requireNonNullElse(abecedarium, ABECEDARIUM);
|
ColumnarTranspositionCipher.abecedarium = Objects.requireNonNullElse(abecedarium, ABECEDARIUM);
|
||||||
table = tableBuilder(word);
|
table = tableBuilder(word);
|
||||||
Object[][] sortedTable = sortTable(table);
|
Object[][] sortedTable = sortTable(table);
|
||||||
StringBuilder wordEncrypted = new StringBuilder();
|
StringBuilder wordEncrypted = new StringBuilder();
|
||||||
for (int i = 0; i < sortedTable[0].length; i++) {
|
for (int i = 0; i < sortedTable[0].length; i++) {
|
||||||
for (int j = 1; j < sortedTable.length; j++) {
|
for (int j = 1; j < sortedTable.length; j++) {
|
||||||
wordEncrypted.append(sortedTable[j][i]);
|
wordEncrypted.append(sortedTable[j][i]);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
return wordEncrypted.toString();
|
||||||
}
|
}
|
||||||
return wordEncrypted.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Decrypts a certain encrypted String with the Columnar Transposition Cipher Rule
|
* Decrypts a certain encrypted String with the Columnar Transposition Cipher Rule
|
||||||
*
|
*
|
||||||
* @return a String decrypted with the word encrypted by the Columnar Transposition Cipher Rule
|
* @return a String decrypted with the word encrypted by the Columnar Transposition Cipher Rule
|
||||||
*/
|
*/
|
||||||
public static String decrypter() {
|
public static String decrypter() {
|
||||||
StringBuilder wordDecrypted = new StringBuilder();
|
StringBuilder wordDecrypted = new StringBuilder();
|
||||||
for (int i = 1; i < table.length; i++) {
|
for (int i = 1; i < table.length; i++) {
|
||||||
for (Object item : table[i]) {
|
for (Object item : table[i]) {
|
||||||
wordDecrypted.append(item);
|
wordDecrypted.append(item);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
return wordDecrypted.toString().replaceAll(ENCRYPTION_FIELD, "");
|
||||||
}
|
}
|
||||||
return wordDecrypted.toString().replaceAll(ENCRYPTION_FIELD, "");
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Builds a table with the word to be encrypted in rows by the Columnar Transposition Cipher Rule
|
* Builds a table with the word to be encrypted in rows by the Columnar Transposition Cipher Rule
|
||||||
*
|
*
|
||||||
* @return An Object[][] with the word to be encrypted filled in rows and columns
|
* @return An Object[][] with the word to be encrypted filled in rows and columns
|
||||||
*/
|
*/
|
||||||
private static Object[][] tableBuilder(String word) {
|
private static Object[][] tableBuilder(String word) {
|
||||||
Object[][] table = new Object[numberOfRows(word) + 1][keyword.length()];
|
Object[][] table = new Object[numberOfRows(word) + 1][keyword.length()];
|
||||||
char[] wordInChards = word.toCharArray();
|
char[] wordInChards = word.toCharArray();
|
||||||
// Fils in the respective numbers
|
// Fils in the respective numbers
|
||||||
table[0] = findElements();
|
table[0] = findElements();
|
||||||
int charElement = 0;
|
int charElement = 0;
|
||||||
for (int i = 1; i < table.length; i++) {
|
for (int i = 1; i < table.length; i++) {
|
||||||
for (int j = 0; j < table[i].length; j++) {
|
for (int j = 0; j < table[i].length; j++) {
|
||||||
if (charElement < wordInChards.length) {
|
if (charElement < wordInChards.length) {
|
||||||
table[i][j] = wordInChards[charElement];
|
table[i][j] = wordInChards[charElement];
|
||||||
charElement++;
|
charElement++;
|
||||||
|
} else {
|
||||||
|
table[i][j] = ENCRYPTION_FIELD_CHAR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return table;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Determines the number of rows the table should have regarding the Columnar Transposition Cipher
|
||||||
|
* Rule
|
||||||
|
*
|
||||||
|
* @return an int with the number of rows that the table should have in order to respect the
|
||||||
|
* Columnar Transposition Cipher Rule.
|
||||||
|
*/
|
||||||
|
private static int numberOfRows(String word) {
|
||||||
|
if (word.length() / keyword.length() > word.length() / keyword.length()) {
|
||||||
|
return (word.length() / keyword.length()) + 1;
|
||||||
} else {
|
} else {
|
||||||
table[i][j] = ENCRYPTION_FIELD_CHAR;
|
return word.length() / keyword.length();
|
||||||
}
|
}
|
||||||
}
|
|
||||||
}
|
}
|
||||||
return table;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Determines the number of rows the table should have regarding the Columnar Transposition Cipher
|
* @return charValues
|
||||||
* Rule
|
*/
|
||||||
*
|
private static Object[] findElements() {
|
||||||
* @return an int with the number of rows that the table should have in order to respect the
|
Object[] charValues = new Object[keyword.length()];
|
||||||
* Columnar Transposition Cipher Rule.
|
for (int i = 0; i < charValues.length; i++) {
|
||||||
*/
|
int charValueIndex = abecedarium.indexOf(keyword.charAt(i));
|
||||||
private static int numberOfRows(String word) {
|
charValues[i] = charValueIndex > -1 ? charValueIndex : null;
|
||||||
if (word.length() / keyword.length() > word.length() / keyword.length()) {
|
|
||||||
return (word.length() / keyword.length()) + 1;
|
|
||||||
} else {
|
|
||||||
return word.length() / keyword.length();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/** @return charValues */
|
|
||||||
private static Object[] findElements() {
|
|
||||||
Object[] charValues = new Object[keyword.length()];
|
|
||||||
for (int i = 0; i < charValues.length; i++) {
|
|
||||||
int charValueIndex = abecedarium.indexOf(keyword.charAt(i));
|
|
||||||
charValues[i] = charValueIndex > -1 ? charValueIndex : null;
|
|
||||||
}
|
|
||||||
return charValues;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @return tableSorted
|
|
||||||
*/
|
|
||||||
private static Object[][] sortTable(Object[][] table) {
|
|
||||||
Object[][] tableSorted = new Object[table.length][table[0].length];
|
|
||||||
for (int i = 0; i < tableSorted.length; i++) {
|
|
||||||
System.arraycopy(table[i], 0, tableSorted[i], 0, tableSorted[i].length);
|
|
||||||
}
|
|
||||||
for (int i = 0; i < tableSorted[0].length; i++) {
|
|
||||||
for (int j = i + 1; j < tableSorted[0].length; j++) {
|
|
||||||
if ((int) tableSorted[0][i] > (int) table[0][j]) {
|
|
||||||
Object[] column = getColumn(tableSorted, tableSorted.length, i);
|
|
||||||
switchColumns(tableSorted, j, i, column);
|
|
||||||
}
|
}
|
||||||
}
|
return charValues;
|
||||||
}
|
}
|
||||||
return tableSorted;
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* @return columnArray
|
* @return tableSorted
|
||||||
*/
|
*/
|
||||||
private static Object[] getColumn(Object[][] table, int rows, int column) {
|
private static Object[][] sortTable(Object[][] table) {
|
||||||
Object[] columnArray = new Object[rows];
|
Object[][] tableSorted = new Object[table.length][table[0].length];
|
||||||
for (int i = 0; i < rows; i++) {
|
for (int i = 0; i < tableSorted.length; i++) {
|
||||||
columnArray[i] = table[i][column];
|
System.arraycopy(table[i], 0, tableSorted[i], 0, tableSorted[i].length);
|
||||||
|
}
|
||||||
|
for (int i = 0; i < tableSorted[0].length; i++) {
|
||||||
|
for (int j = i + 1; j < tableSorted[0].length; j++) {
|
||||||
|
if ((int) tableSorted[0][i] > (int) table[0][j]) {
|
||||||
|
Object[] column = getColumn(tableSorted, tableSorted.length, i);
|
||||||
|
switchColumns(tableSorted, j, i, column);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return tableSorted;
|
||||||
}
|
}
|
||||||
return columnArray;
|
|
||||||
}
|
|
||||||
|
|
||||||
private static void switchColumns(
|
/**
|
||||||
Object[][] table, int firstColumnIndex, int secondColumnIndex, Object[] columnToSwitch) {
|
* @return columnArray
|
||||||
for (int i = 0; i < table.length; i++) {
|
*/
|
||||||
table[i][secondColumnIndex] = table[i][firstColumnIndex];
|
private static Object[] getColumn(Object[][] table, int rows, int column) {
|
||||||
table[i][firstColumnIndex] = columnToSwitch[i];
|
Object[] columnArray = new Object[rows];
|
||||||
|
for (int i = 0; i < rows; i++) {
|
||||||
|
columnArray[i] = table[i][column];
|
||||||
|
}
|
||||||
|
return columnArray;
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
private static void switchColumns(
|
||||||
* Creates an abecedarium with a specified ascii inded
|
Object[][] table, int firstColumnIndex, int secondColumnIndex, Object[] columnToSwitch) {
|
||||||
*
|
for (int i = 0; i < table.length; i++) {
|
||||||
* @param value Number of characters being used based on the ASCII Table
|
table[i][secondColumnIndex] = table[i][firstColumnIndex];
|
||||||
*/
|
table[i][firstColumnIndex] = columnToSwitch[i];
|
||||||
private static void abecedariumBuilder(int value) {
|
}
|
||||||
StringBuilder t = new StringBuilder();
|
|
||||||
for (int i = 0; i < value; i++) {
|
|
||||||
t.append((char) i);
|
|
||||||
}
|
}
|
||||||
abecedarium = t.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
private static void showTable() {
|
/**
|
||||||
for (Object[] table1 : table) {
|
* Creates an abecedarium with a specified ascii inded
|
||||||
for (Object item : table1) {
|
*
|
||||||
System.out.print(item + " ");
|
* @param value Number of characters being used based on the ASCII Table
|
||||||
}
|
*/
|
||||||
System.out.println();
|
private static void abecedariumBuilder(int value) {
|
||||||
|
StringBuilder t = new StringBuilder();
|
||||||
|
for (int i = 0; i < value; i++) {
|
||||||
|
t.append((char) i);
|
||||||
|
}
|
||||||
|
abecedarium = t.toString();
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
public static void main(String[] args) {
|
private static void showTable() {
|
||||||
String keywordForExample = "asd215";
|
for (Object[] table1 : table) {
|
||||||
String wordBeingEncrypted = "This is a test of the Columnar Transposition Cipher";
|
for (Object item : table1) {
|
||||||
System.out.println("### Example of Columnar Transposition Cipher ###\n");
|
System.out.print(item + " ");
|
||||||
System.out.println("Word being encryped ->>> " + wordBeingEncrypted);
|
}
|
||||||
System.out.println(
|
System.out.println();
|
||||||
"Word encrypted ->>> "
|
}
|
||||||
+ ColumnarTranspositionCipher.encrpyter(wordBeingEncrypted, keywordForExample));
|
}
|
||||||
System.out.println("Word decryped ->>> " + ColumnarTranspositionCipher.decrypter());
|
|
||||||
System.out.println("\n### Encrypted Table ###");
|
public static void main(String[] args) {
|
||||||
showTable();
|
String keywordForExample = "asd215";
|
||||||
}
|
String wordBeingEncrypted = "This is a test of the Columnar Transposition Cipher";
|
||||||
|
System.out.println("### Example of Columnar Transposition Cipher ###\n");
|
||||||
|
System.out.println("Word being encryped ->>> " + wordBeingEncrypted);
|
||||||
|
System.out.println(
|
||||||
|
"Word encrypted ->>> "
|
||||||
|
+ ColumnarTranspositionCipher.encrpyter(wordBeingEncrypted, keywordForExample));
|
||||||
|
System.out.println("Word decryped ->>> " + ColumnarTranspositionCipher.decrypter());
|
||||||
|
System.out.println("\n### Encrypted Table ###");
|
||||||
|
showTable();
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,172 +1,165 @@
|
|||||||
package Ciphers;
|
package Ciphers;
|
||||||
|
|
||||||
import java.util.*;
|
import java.util.Scanner;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Java Implementation of Hill Cipher
|
* Java Implementation of Hill Cipher
|
||||||
* Hill cipher is a polyalphabetic substitution cipher. Each letter is represented by a number belonging to the set Z26 where A=0 , B=1, ..... Z=25.
|
* Hill cipher is a polyalphabetic substitution cipher. Each letter is represented by a number belonging to the set Z26 where A=0 , B=1, ..... Z=25.
|
||||||
* To encrypt a message, each block of n letters (since matrix size is n x n) is multiplied by an invertible n × n matrix, against modulus 26.
|
* To encrypt a message, each block of n letters (since matrix size is n x n) is multiplied by an invertible n × n matrix, against modulus 26.
|
||||||
* To decrypt the message, each block is multiplied by the inverse of the matrix used for encryption.
|
* To decrypt the message, each block is multiplied by the inverse of the matrix used for encryption.
|
||||||
* The cipher key and plaintext/ciphertext are user inputs.
|
* The cipher key and plaintext/ciphertext are user inputs.
|
||||||
* @author Ojasva Jain
|
* @author Ojasva Jain
|
||||||
*/
|
*/
|
||||||
|
|
||||||
public class HillCipher{
|
public class HillCipher {
|
||||||
static Scanner in = new Scanner (System.in);
|
static Scanner in = new Scanner(System.in);
|
||||||
|
|
||||||
/* Following function encrypts the message
|
/* Following function encrypts the message
|
||||||
*/
|
*/
|
||||||
static void encrypt(String message)
|
static void encrypt(String message) {
|
||||||
{
|
message = message.toUpperCase();
|
||||||
message = message.toUpperCase();
|
// Get key matrix
|
||||||
// Get key matrix
|
System.out.println("Enter key matrix size");
|
||||||
System.out.println("Enter key matrix size");
|
int n = in.nextInt();
|
||||||
int n = in.nextInt();
|
System.out.println("Enter Key/encryptionKey matrix ");
|
||||||
System.out.println("Enter Key/encryptionKey matrix ");
|
int keyMatrix[][] = new int[n][n];
|
||||||
int keyMatrix[][] = new int [n][n];
|
for (int i = 0; i < n; i++) {
|
||||||
for(int i=0;i<n;i++){
|
for (int j = 0; j < n; j++) {
|
||||||
for(int j=0;j<n;j++){
|
keyMatrix[i][j] = in.nextInt();
|
||||||
keyMatrix[i][j] = in.nextInt();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
//check if det = 0
|
|
||||||
if(determinant(keyMatrix,n)%26 == 0)
|
|
||||||
{
|
|
||||||
System.out.println("Invalid key, as determinant = 0. Program Terminated");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
int [][]messageVector = new int[n][1];
|
|
||||||
String CipherText="";
|
|
||||||
int cipherMatrix [][] = new int [n][1];
|
|
||||||
int j = 0;
|
|
||||||
while(j<message.length()){
|
|
||||||
for (int i = 0; i < n; i++){
|
|
||||||
if(j>=message.length()){ messageVector[i][0] = 23;}
|
|
||||||
else
|
|
||||||
messageVector[i][0] = (message.charAt(j))%65;
|
|
||||||
System.out.println(messageVector[i][0]);
|
|
||||||
j++;
|
|
||||||
}
|
|
||||||
int x, i;
|
|
||||||
for (i = 0; i < n; i++)
|
|
||||||
{
|
|
||||||
cipherMatrix[i][0] = 0;
|
|
||||||
|
|
||||||
for (x = 0; x < n; x++)
|
|
||||||
{
|
|
||||||
cipherMatrix[i][0] += keyMatrix[i][x] * messageVector[x][0];
|
|
||||||
}
|
}
|
||||||
System.out.println(cipherMatrix[i][0]);
|
|
||||||
cipherMatrix[i][0] = cipherMatrix[i][0] % 26;
|
|
||||||
}
|
}
|
||||||
for (i = 0; i < n; i++)
|
//check if det = 0
|
||||||
CipherText += (char)(cipherMatrix[i][0] + 65);
|
if (determinant(keyMatrix, n) % 26 == 0) {
|
||||||
}
|
System.out.println("Invalid key, as determinant = 0. Program Terminated");
|
||||||
System.out.println("Ciphertext: "+ CipherText);
|
return;
|
||||||
}
|
|
||||||
//Following function decrypts a message
|
|
||||||
static void decrypt(String message)
|
|
||||||
{
|
|
||||||
message = message.toUpperCase();
|
|
||||||
// Get key matrix
|
|
||||||
System.out.println("Enter key matrix size");
|
|
||||||
int n = in.nextInt();
|
|
||||||
System.out.println("Enter inverseKey/decryptionKey matrix ");
|
|
||||||
int keyMatrix[][] = new int [n][n];
|
|
||||||
for(int i=0;i<n;i++){
|
|
||||||
for(int j=0;j<n;j++){
|
|
||||||
keyMatrix[i][j] = in.nextInt();
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
//check if det = 0
|
|
||||||
if(determinant(keyMatrix,n)%26 == 0)
|
|
||||||
{
|
|
||||||
System.out.println("Invalid key, as determinant = 0. Program Terminated");
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
//solving for the required plaintext message
|
|
||||||
int [][]messageVector = new int[n][1];
|
|
||||||
String PlainText="";
|
|
||||||
int plainMatrix [][] = new int [n][1];
|
|
||||||
int j = 0;
|
|
||||||
while(j<message.length()){
|
|
||||||
for (int i = 0; i < n; i++){
|
|
||||||
if(j>=message.length()){ messageVector[i][0] = 23;}
|
|
||||||
else
|
|
||||||
messageVector[i][0] = (message.charAt(j))%65;
|
|
||||||
System.out.println(messageVector[i][0]);
|
|
||||||
j++;
|
|
||||||
}
|
|
||||||
int x, i;
|
|
||||||
for (i = 0; i < n; i++)
|
|
||||||
{
|
|
||||||
plainMatrix[i][0] = 0;
|
|
||||||
|
|
||||||
for (x = 0; x < n; x++)
|
int[][] messageVector = new int[n][1];
|
||||||
{
|
String CipherText = "";
|
||||||
|
int cipherMatrix[][] = new int[n][1];
|
||||||
|
int j = 0;
|
||||||
|
while (j < message.length()) {
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
if (j >= message.length()) {
|
||||||
|
messageVector[i][0] = 23;
|
||||||
|
} else
|
||||||
|
messageVector[i][0] = (message.charAt(j)) % 65;
|
||||||
|
System.out.println(messageVector[i][0]);
|
||||||
|
j++;
|
||||||
|
}
|
||||||
|
int x, i;
|
||||||
|
for (i = 0; i < n; i++) {
|
||||||
|
cipherMatrix[i][0] = 0;
|
||||||
|
|
||||||
|
for (x = 0; x < n; x++) {
|
||||||
|
cipherMatrix[i][0] += keyMatrix[i][x] * messageVector[x][0];
|
||||||
|
}
|
||||||
|
System.out.println(cipherMatrix[i][0]);
|
||||||
|
cipherMatrix[i][0] = cipherMatrix[i][0] % 26;
|
||||||
|
}
|
||||||
|
for (i = 0; i < n; i++)
|
||||||
|
CipherText += (char) (cipherMatrix[i][0] + 65);
|
||||||
|
}
|
||||||
|
System.out.println("Ciphertext: " + CipherText);
|
||||||
|
}
|
||||||
|
|
||||||
|
//Following function decrypts a message
|
||||||
|
static void decrypt(String message) {
|
||||||
|
message = message.toUpperCase();
|
||||||
|
// Get key matrix
|
||||||
|
System.out.println("Enter key matrix size");
|
||||||
|
int n = in.nextInt();
|
||||||
|
System.out.println("Enter inverseKey/decryptionKey matrix ");
|
||||||
|
int keyMatrix[][] = new int[n][n];
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
for (int j = 0; j < n; j++) {
|
||||||
|
keyMatrix[i][j] = in.nextInt();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
//check if det = 0
|
||||||
|
if (determinant(keyMatrix, n) % 26 == 0) {
|
||||||
|
System.out.println("Invalid key, as determinant = 0. Program Terminated");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
//solving for the required plaintext message
|
||||||
|
int[][] messageVector = new int[n][1];
|
||||||
|
String PlainText = "";
|
||||||
|
int plainMatrix[][] = new int[n][1];
|
||||||
|
int j = 0;
|
||||||
|
while (j < message.length()) {
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
if (j >= message.length()) {
|
||||||
|
messageVector[i][0] = 23;
|
||||||
|
} else
|
||||||
|
messageVector[i][0] = (message.charAt(j)) % 65;
|
||||||
|
System.out.println(messageVector[i][0]);
|
||||||
|
j++;
|
||||||
|
}
|
||||||
|
int x, i;
|
||||||
|
for (i = 0; i < n; i++) {
|
||||||
|
plainMatrix[i][0] = 0;
|
||||||
|
|
||||||
|
for (x = 0; x < n; x++) {
|
||||||
plainMatrix[i][0] += keyMatrix[i][x] * messageVector[x][0];
|
plainMatrix[i][0] += keyMatrix[i][x] * messageVector[x][0];
|
||||||
}
|
}
|
||||||
|
|
||||||
plainMatrix[i][0] = plainMatrix[i][0] % 26;
|
plainMatrix[i][0] = plainMatrix[i][0] % 26;
|
||||||
}
|
}
|
||||||
for (i = 0; i < n; i++)
|
for (i = 0; i < n; i++)
|
||||||
PlainText += (char)(plainMatrix[i][0] + 65);
|
PlainText += (char) (plainMatrix[i][0] + 65);
|
||||||
|
}
|
||||||
|
System.out.println("Plaintext: " + PlainText);
|
||||||
}
|
}
|
||||||
System.out.println("Plaintext: "+PlainText);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Determinant calculator
|
// Determinant calculator
|
||||||
public static int determinant(int a[][], int n){
|
public static int determinant(int a[][], int n) {
|
||||||
int det = 0, sign = 1, p = 0, q = 0;
|
int det = 0, sign = 1, p = 0, q = 0;
|
||||||
|
|
||||||
if(n==1){
|
if (n == 1) {
|
||||||
det = a[0][0];
|
det = a[0][0];
|
||||||
}
|
} else {
|
||||||
else{
|
int b[][] = new int[n - 1][n - 1];
|
||||||
int b[][] = new int[n-1][n-1];
|
for (int x = 0; x < n; x++) {
|
||||||
for(int x = 0 ; x < n ; x++){
|
p = 0;
|
||||||
p=0;q=0;
|
q = 0;
|
||||||
for(int i = 1;i < n; i++){
|
for (int i = 1; i < n; i++) {
|
||||||
for(int j = 0; j < n;j++){
|
for (int j = 0; j < n; j++) {
|
||||||
if(j != x){
|
if (j != x) {
|
||||||
b[p][q++] = a[i][j];
|
b[p][q++] = a[i][j];
|
||||||
if(q % (n-1) == 0){
|
if (q % (n - 1) == 0) {
|
||||||
p++;
|
p++;
|
||||||
q=0;
|
q = 0;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
det = det + a[0][x] * determinant(b, n - 1) * sign;
|
||||||
|
sign = -sign;
|
||||||
}
|
}
|
||||||
det = det + a[0][x] *determinant(b, n-1) * sign;
|
|
||||||
sign = -sign;
|
|
||||||
}
|
}
|
||||||
|
return det;
|
||||||
}
|
}
|
||||||
return det;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Function to implement Hill Cipher
|
// Function to implement Hill Cipher
|
||||||
static void hillcipher(String message)
|
static void hillcipher(String message) {
|
||||||
{
|
message.toUpperCase();
|
||||||
message.toUpperCase();
|
System.out.println("What do you want to process from the message?");
|
||||||
System.out.println("What do you want to process from the message?");
|
System.out.println("Press 1: To Encrypt");
|
||||||
System.out.println("Press 1: To Encrypt");
|
System.out.println("Press 2: To Decrypt");
|
||||||
System.out.println("Press 2: To Decrypt");
|
short sc = in.nextShort();
|
||||||
short sc = in.nextShort();
|
if (sc == 1)
|
||||||
if(sc == 1)
|
encrypt(message);
|
||||||
encrypt(message);
|
else if (sc == 2)
|
||||||
else if(sc == 2)
|
decrypt(message);
|
||||||
decrypt(message);
|
else
|
||||||
else
|
System.out.println("Invalid input, program terminated.");
|
||||||
System.out.println("Invalid input, program terminated.");
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// Driver code
|
// Driver code
|
||||||
public static void main(String[] args)
|
public static void main(String[] args) {
|
||||||
{
|
// Get the message to be encrypted
|
||||||
// Get the message to be encrypted
|
System.out.println("Enter message");
|
||||||
System.out.println("Enter message");
|
String message = in.nextLine();
|
||||||
String message = in.nextLine();
|
hillcipher(message);
|
||||||
hillcipher(message);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
124
Ciphers/RSA.java
124
Ciphers/RSA.java
@ -1,74 +1,76 @@
|
|||||||
package Ciphers;
|
package Ciphers;
|
||||||
|
|
||||||
|
import javax.swing.*;
|
||||||
import java.math.BigInteger;
|
import java.math.BigInteger;
|
||||||
import java.security.SecureRandom;
|
import java.security.SecureRandom;
|
||||||
import javax.swing.JOptionPane;
|
|
||||||
|
|
||||||
/** @author Nguyen Duy Tiep on 23-Oct-17. */
|
/**
|
||||||
|
* @author Nguyen Duy Tiep on 23-Oct-17.
|
||||||
|
*/
|
||||||
public final class RSA {
|
public final class RSA {
|
||||||
|
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
|
|
||||||
RSA rsa = new RSA(1024);
|
RSA rsa = new RSA(1024);
|
||||||
String text1 = JOptionPane.showInputDialog("Enter a message to encrypt :");
|
String text1 = JOptionPane.showInputDialog("Enter a message to encrypt :");
|
||||||
|
|
||||||
String ciphertext = rsa.encrypt(text1);
|
String ciphertext = rsa.encrypt(text1);
|
||||||
JOptionPane.showMessageDialog(null, "Your encrypted message : " + ciphertext);
|
JOptionPane.showMessageDialog(null, "Your encrypted message : " + ciphertext);
|
||||||
|
|
||||||
JOptionPane.showMessageDialog(null, "Your message after decrypt : " + rsa.decrypt(ciphertext));
|
JOptionPane.showMessageDialog(null, "Your message after decrypt : " + rsa.decrypt(ciphertext));
|
||||||
}
|
|
||||||
|
|
||||||
private BigInteger modulus, privateKey, publicKey;
|
|
||||||
|
|
||||||
public RSA(int bits) {
|
|
||||||
generateKeys(bits);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @return encrypted message
|
|
||||||
*/
|
|
||||||
public synchronized String encrypt(String message) {
|
|
||||||
return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @return encrypted message as big integer
|
|
||||||
*/
|
|
||||||
public synchronized BigInteger encrypt(BigInteger message) {
|
|
||||||
return message.modPow(publicKey, modulus);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @return plain message
|
|
||||||
*/
|
|
||||||
public synchronized String decrypt(String encryptedMessage) {
|
|
||||||
return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray());
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* @return plain message as big integer
|
|
||||||
*/
|
|
||||||
public synchronized BigInteger decrypt(BigInteger encryptedMessage) {
|
|
||||||
return encryptedMessage.modPow(privateKey, modulus);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Generate a new public and private key set.
|
|
||||||
*/
|
|
||||||
public synchronized void generateKeys(int bits) {
|
|
||||||
SecureRandom r = new SecureRandom();
|
|
||||||
BigInteger p = new BigInteger(bits / 2, 100, r);
|
|
||||||
BigInteger q = new BigInteger(bits / 2, 100, r);
|
|
||||||
modulus = p.multiply(q);
|
|
||||||
|
|
||||||
BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
|
|
||||||
|
|
||||||
publicKey = new BigInteger("3");
|
|
||||||
|
|
||||||
while (m.gcd(publicKey).intValue() > 1) {
|
|
||||||
publicKey = publicKey.add(new BigInteger("2"));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
privateKey = publicKey.modInverse(m);
|
private BigInteger modulus, privateKey, publicKey;
|
||||||
}
|
|
||||||
|
public RSA(int bits) {
|
||||||
|
generateKeys(bits);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return encrypted message
|
||||||
|
*/
|
||||||
|
public synchronized String encrypt(String message) {
|
||||||
|
return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return encrypted message as big integer
|
||||||
|
*/
|
||||||
|
public synchronized BigInteger encrypt(BigInteger message) {
|
||||||
|
return message.modPow(publicKey, modulus);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return plain message
|
||||||
|
*/
|
||||||
|
public synchronized String decrypt(String encryptedMessage) {
|
||||||
|
return new String((new BigInteger(encryptedMessage)).modPow(privateKey, modulus).toByteArray());
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @return plain message as big integer
|
||||||
|
*/
|
||||||
|
public synchronized BigInteger decrypt(BigInteger encryptedMessage) {
|
||||||
|
return encryptedMessage.modPow(privateKey, modulus);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Generate a new public and private key set.
|
||||||
|
*/
|
||||||
|
public synchronized void generateKeys(int bits) {
|
||||||
|
SecureRandom r = new SecureRandom();
|
||||||
|
BigInteger p = new BigInteger(bits / 2, 100, r);
|
||||||
|
BigInteger q = new BigInteger(bits / 2, 100, r);
|
||||||
|
modulus = p.multiply(q);
|
||||||
|
|
||||||
|
BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
|
||||||
|
|
||||||
|
publicKey = new BigInteger("3");
|
||||||
|
|
||||||
|
while (m.gcd(publicKey).intValue() > 1) {
|
||||||
|
publicKey = publicKey.add(new BigInteger("2"));
|
||||||
|
}
|
||||||
|
|
||||||
|
privateKey = publicKey.modInverse(m);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,18 +1,17 @@
|
|||||||
package ciphers;
|
package ciphers;
|
||||||
|
|
||||||
import java.util.*;
|
import java.util.HashMap;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
*
|
|
||||||
* The simple substitution cipher is a cipher that has been in use for many hundreds of years
|
* The simple substitution cipher is a cipher that has been in use for many hundreds of years
|
||||||
* (an excellent history is given in Simon Singhs 'the Code Book').
|
* (an excellent history is given in Simon Singhs 'the Code Book').
|
||||||
* It basically consists of substituting every plaintext character for a different ciphertext character.
|
* It basically consists of substituting every plaintext character for a different ciphertext character.
|
||||||
* It differs from the Caesar cipher in that the cipher alphabet is not simply the alphabet shifted,
|
* It differs from the Caesar cipher in that the cipher alphabet is not simply the alphabet shifted,
|
||||||
* it is completely jumbled.
|
* it is completely jumbled.
|
||||||
*
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
public class simpleSubCipher {
|
public class SimpleSubCipher {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Encrypt text by replacing each element with its opposite character.
|
* Encrypt text by replacing each element with its opposite character.
|
||||||
@ -25,7 +24,7 @@ public class simpleSubCipher {
|
|||||||
String encoded = "";
|
String encoded = "";
|
||||||
|
|
||||||
// This map is used to encode
|
// This map is used to encode
|
||||||
Map<Character,Character> cipherMap = new HashMap<Character,Character>();
|
Map<Character, Character> cipherMap = new HashMap<>();
|
||||||
|
|
||||||
char beginSmallLetter = 'a';
|
char beginSmallLetter = 'a';
|
||||||
char beginCapitalLetter = 'A';
|
char beginCapitalLetter = 'A';
|
||||||
@ -34,13 +33,13 @@ public class simpleSubCipher {
|
|||||||
String cipherCapital = cipherSmall.toUpperCase();
|
String cipherCapital = cipherSmall.toUpperCase();
|
||||||
|
|
||||||
// To handle Small and Capital letters
|
// To handle Small and Capital letters
|
||||||
for(int i = 0; i < cipherSmall.length(); i++){
|
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||||
cipherMap.put(beginSmallLetter++,cipherSmall.charAt(i));
|
cipherMap.put(beginSmallLetter++, cipherSmall.charAt(i));
|
||||||
cipherMap.put(beginCapitalLetter++,cipherCapital.charAt(i));
|
cipherMap.put(beginCapitalLetter++, cipherCapital.charAt(i));
|
||||||
}
|
}
|
||||||
|
|
||||||
for(int i = 0; i < message.length(); i++){
|
for (int i = 0; i < message.length(); i++) {
|
||||||
if(Character.isAlphabetic(message.charAt(i)))
|
if (Character.isAlphabetic(message.charAt(i)))
|
||||||
encoded += cipherMap.get(message.charAt(i));
|
encoded += cipherMap.get(message.charAt(i));
|
||||||
else
|
else
|
||||||
encoded += message.charAt(i);
|
encoded += message.charAt(i);
|
||||||
@ -60,7 +59,7 @@ public class simpleSubCipher {
|
|||||||
String decoded = "";
|
String decoded = "";
|
||||||
|
|
||||||
|
|
||||||
Map<Character,Character> cipherMap = new HashMap<Character,Character>();
|
Map<Character, Character> cipherMap = new HashMap<Character, Character>();
|
||||||
|
|
||||||
char beginSmallLetter = 'a';
|
char beginSmallLetter = 'a';
|
||||||
char beginCapitalLetter = 'A';
|
char beginCapitalLetter = 'A';
|
||||||
@ -68,13 +67,13 @@ public class simpleSubCipher {
|
|||||||
cipherSmall = cipherSmall.toLowerCase();
|
cipherSmall = cipherSmall.toLowerCase();
|
||||||
String cipherCapital = cipherSmall.toUpperCase();
|
String cipherCapital = cipherSmall.toUpperCase();
|
||||||
|
|
||||||
for(int i = 0; i < cipherSmall.length(); i++){
|
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||||
cipherMap.put(cipherSmall.charAt(i),beginSmallLetter++);
|
cipherMap.put(cipherSmall.charAt(i), beginSmallLetter++);
|
||||||
cipherMap.put(cipherCapital.charAt(i),beginCapitalLetter++);
|
cipherMap.put(cipherCapital.charAt(i), beginCapitalLetter++);
|
||||||
}
|
}
|
||||||
|
|
||||||
for(int i = 0; i < encryptedMessage.length(); i++){
|
for (int i = 0; i < encryptedMessage.length(); i++) {
|
||||||
if(Character.isAlphabetic(encryptedMessage.charAt(i)))
|
if (Character.isAlphabetic(encryptedMessage.charAt(i)))
|
||||||
decoded += cipherMap.get(encryptedMessage.charAt(i));
|
decoded += cipherMap.get(encryptedMessage.charAt(i));
|
||||||
else
|
else
|
||||||
decoded += encryptedMessage.charAt(i);
|
decoded += encryptedMessage.charAt(i);
|
||||||
@ -84,8 +83,8 @@ public class simpleSubCipher {
|
|||||||
}
|
}
|
||||||
|
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
String a = encode("defend the east wall of the castle","phqgiumeaylnofdxjkrcvstzwb");
|
String a = encode("defend the east wall of the castle", "phqgiumeaylnofdxjkrcvstzwb");
|
||||||
String b = decode(a,"phqgiumeaylnofdxjkrcvstzwb");
|
String b = decode(a, "phqgiumeaylnofdxjkrcvstzwb");
|
||||||
System.out.println(b);
|
System.out.println(b);
|
||||||
}
|
}
|
||||||
|
|
@ -1,6 +1,7 @@
|
|||||||
package Ciphers;
|
package Ciphers;
|
||||||
|
|
||||||
import java.util.*;
|
import java.util.HashMap;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* The simple substitution cipher is a cipher that has been in use for many hundreds of years (an
|
* The simple substitution cipher is a cipher that has been in use for many hundreds of years (an
|
||||||
@ -13,71 +14,73 @@ import java.util.*;
|
|||||||
*/
|
*/
|
||||||
public class SimpleSubstitutionCipher {
|
public class SimpleSubstitutionCipher {
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Encrypt text by replacing each element with its opposite character.
|
* Encrypt text by replacing each element with its opposite character.
|
||||||
*
|
*
|
||||||
* @return Encrypted message
|
* @return Encrypted message
|
||||||
*/
|
*/
|
||||||
public static String encode(String message, String cipherSmall) {
|
public static String encode(String message, String cipherSmall) {
|
||||||
StringBuilder encoded = new StringBuilder();
|
StringBuilder encoded = new StringBuilder();
|
||||||
|
|
||||||
// This map is used to encode
|
// This map is used to encode
|
||||||
Map<Character, Character> cipherMap = new HashMap<>();
|
Map<Character, Character> cipherMap = new HashMap<>();
|
||||||
|
|
||||||
char beginSmallLetter = 'a';
|
char beginSmallLetter = 'a';
|
||||||
char beginCapitalLetter = 'A';
|
char beginCapitalLetter = 'A';
|
||||||
|
|
||||||
cipherSmall = cipherSmall.toLowerCase();
|
cipherSmall = cipherSmall.toLowerCase();
|
||||||
String cipherCapital = cipherSmall.toUpperCase();
|
String cipherCapital = cipherSmall.toUpperCase();
|
||||||
|
|
||||||
// To handle Small and Capital letters
|
// To handle Small and Capital letters
|
||||||
for (int i = 0; i < cipherSmall.length(); i++) {
|
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||||
cipherMap.put(beginSmallLetter++, cipherSmall.charAt(i));
|
cipherMap.put(beginSmallLetter++, cipherSmall.charAt(i));
|
||||||
cipherMap.put(beginCapitalLetter++, cipherCapital.charAt(i));
|
cipherMap.put(beginCapitalLetter++, cipherCapital.charAt(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < message.length(); i++) {
|
||||||
|
if (Character.isAlphabetic(message.charAt(i))) encoded.append(cipherMap.get(message.charAt(i)));
|
||||||
|
else encoded.append(message.charAt(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
return encoded.toString();
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < message.length(); i++) {
|
/**
|
||||||
if (Character.isAlphabetic(message.charAt(i))) encoded.append(cipherMap.get(message.charAt(i)));
|
* Decrypt message by replacing each element with its opposite character in cipher.
|
||||||
else encoded.append(message.charAt(i));
|
*
|
||||||
|
* @return message
|
||||||
|
*/
|
||||||
|
public static String decode(String encryptedMessage, String cipherSmall) {
|
||||||
|
StringBuilder decoded = new StringBuilder();
|
||||||
|
|
||||||
|
Map<Character, Character> cipherMap = new HashMap<>();
|
||||||
|
|
||||||
|
char beginSmallLetter = 'a';
|
||||||
|
char beginCapitalLetter = 'A';
|
||||||
|
|
||||||
|
cipherSmall = cipherSmall.toLowerCase();
|
||||||
|
String cipherCapital = cipherSmall.toUpperCase();
|
||||||
|
|
||||||
|
for (int i = 0; i < cipherSmall.length(); i++) {
|
||||||
|
cipherMap.put(cipherSmall.charAt(i), beginSmallLetter++);
|
||||||
|
cipherMap.put(cipherCapital.charAt(i), beginCapitalLetter++);
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < encryptedMessage.length(); i++) {
|
||||||
|
if (Character.isAlphabetic(encryptedMessage.charAt(i)))
|
||||||
|
decoded.append(cipherMap.get(encryptedMessage.charAt(i)));
|
||||||
|
else decoded.append(encryptedMessage.charAt(i));
|
||||||
|
}
|
||||||
|
|
||||||
|
return decoded.toString();
|
||||||
}
|
}
|
||||||
|
|
||||||
return encoded.toString();
|
/**
|
||||||
}
|
* TODO remove main and make JUnit Testing
|
||||||
|
*/
|
||||||
/**
|
public static void main(String[] args) {
|
||||||
* Decrypt message by replacing each element with its opposite character in cipher.
|
String a = encode("defend the east wall of the castle", "phqgiumeaylnofdxjkrcvstzwb");
|
||||||
*
|
String b = decode(a, "phqgiumeaylnofdxjkrcvstzwb");
|
||||||
* @return message
|
System.out.println(b);
|
||||||
*/
|
|
||||||
public static String decode(String encryptedMessage, String cipherSmall) {
|
|
||||||
StringBuilder decoded = new StringBuilder();
|
|
||||||
|
|
||||||
Map<Character, Character> cipherMap = new HashMap<>();
|
|
||||||
|
|
||||||
char beginSmallLetter = 'a';
|
|
||||||
char beginCapitalLetter = 'A';
|
|
||||||
|
|
||||||
cipherSmall = cipherSmall.toLowerCase();
|
|
||||||
String cipherCapital = cipherSmall.toUpperCase();
|
|
||||||
|
|
||||||
for (int i = 0; i < cipherSmall.length(); i++) {
|
|
||||||
cipherMap.put(cipherSmall.charAt(i), beginSmallLetter++);
|
|
||||||
cipherMap.put(cipherCapital.charAt(i), beginCapitalLetter++);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int i = 0; i < encryptedMessage.length(); i++) {
|
|
||||||
if (Character.isAlphabetic(encryptedMessage.charAt(i)))
|
|
||||||
decoded.append(cipherMap.get(encryptedMessage.charAt(i)));
|
|
||||||
else decoded.append(encryptedMessage.charAt(i));
|
|
||||||
}
|
|
||||||
|
|
||||||
return decoded.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
/** TODO remove main and make JUnit Testing */
|
|
||||||
public static void main(String[] args) {
|
|
||||||
String a = encode("defend the east wall of the castle", "phqgiumeaylnofdxjkrcvstzwb");
|
|
||||||
String b = decode(a, "phqgiumeaylnofdxjkrcvstzwb");
|
|
||||||
System.out.println(b);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -8,55 +8,55 @@ package Ciphers;
|
|||||||
*/
|
*/
|
||||||
public class Vigenere {
|
public class Vigenere {
|
||||||
|
|
||||||
public static String encrypt(final String message, final String key) {
|
public static String encrypt(final String message, final String key) {
|
||||||
|
|
||||||
StringBuilder result = new StringBuilder();
|
StringBuilder result = new StringBuilder();
|
||||||
|
|
||||||
for (int i = 0, j = 0; i < message.length(); i++) {
|
for (int i = 0, j = 0; i < message.length(); i++) {
|
||||||
char c = message.charAt(i);
|
char c = message.charAt(i);
|
||||||
if (Character.isLetter(c)) {
|
if (Character.isLetter(c)) {
|
||||||
if (Character.isUpperCase(c)) {
|
if (Character.isUpperCase(c)) {
|
||||||
result.append((char) ((c + key.toUpperCase().charAt(j) - 2 * 'A') % 26 + 'A'));
|
result.append((char) ((c + key.toUpperCase().charAt(j) - 2 * 'A') % 26 + 'A'));
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
result.append((char) ((c + key.toLowerCase().charAt(j) - 2 * 'a') % 26 + 'a'));
|
result.append((char) ((c + key.toLowerCase().charAt(j) - 2 * 'a') % 26 + 'a'));
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
result.append(c);
|
||||||
|
}
|
||||||
|
j = ++j % key.length();
|
||||||
}
|
}
|
||||||
} else {
|
return result.toString();
|
||||||
result.append(c);
|
|
||||||
}
|
|
||||||
j = ++j % key.length();
|
|
||||||
}
|
}
|
||||||
return result.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
public static String decrypt(final String message, final String key) {
|
public static String decrypt(final String message, final String key) {
|
||||||
StringBuilder result = new StringBuilder();
|
StringBuilder result = new StringBuilder();
|
||||||
|
|
||||||
for (int i = 0, j = 0; i < message.length(); i++) {
|
for (int i = 0, j = 0; i < message.length(); i++) {
|
||||||
|
|
||||||
char c = message.charAt(i);
|
char c = message.charAt(i);
|
||||||
if (Character.isLetter(c)) {
|
if (Character.isLetter(c)) {
|
||||||
if (Character.isUpperCase(c)) {
|
if (Character.isUpperCase(c)) {
|
||||||
result.append((char) ('Z' - (25 - (c - key.toUpperCase().charAt(j))) % 26));
|
result.append((char) ('Z' - (25 - (c - key.toUpperCase().charAt(j))) % 26));
|
||||||
|
|
||||||
} else {
|
} else {
|
||||||
result.append((char) ('z' - (25 - (c - key.toLowerCase().charAt(j))) % 26));
|
result.append((char) ('z' - (25 - (c - key.toLowerCase().charAt(j))) % 26));
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
result.append(c);
|
||||||
|
}
|
||||||
|
|
||||||
|
j = ++j % key.length();
|
||||||
}
|
}
|
||||||
} else {
|
return result.toString();
|
||||||
result.append(c);
|
|
||||||
}
|
|
||||||
|
|
||||||
j = ++j % key.length();
|
|
||||||
}
|
}
|
||||||
return result.toString();
|
|
||||||
}
|
|
||||||
|
|
||||||
public static void main(String[] args) {
|
public static void main(String[] args) {
|
||||||
String text = "Hello World!";
|
String text = "Hello World!";
|
||||||
String key = "itsakey";
|
String key = "itsakey";
|
||||||
System.out.println(text);
|
System.out.println(text);
|
||||||
String ciphertext = encrypt(text, key);
|
String ciphertext = encrypt(text, key);
|
||||||
System.out.println(ciphertext);
|
System.out.println(ciphertext);
|
||||||
System.out.println(decrypt(ciphertext, key));
|
System.out.println(decrypt(ciphertext, key));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1,83 +0,0 @@
|
|||||||
package Ciphers;
|
|
||||||
class affineCipher
|
|
||||||
{
|
|
||||||
|
|
||||||
// Key values of a and b
|
|
||||||
static int a = 17;
|
|
||||||
static int b = 20;
|
|
||||||
|
|
||||||
static String encryptMessage(char[] msg)
|
|
||||||
{
|
|
||||||
/// Cipher Text initially empty
|
|
||||||
String cipher = "";
|
|
||||||
for (int i = 0; i < msg.length; i++)
|
|
||||||
{
|
|
||||||
// Avoid space to be encrypted
|
|
||||||
/* applying encryption formula ( a x + b ) mod m
|
|
||||||
{here x is msg[i] and m is 26} and added 'A' to
|
|
||||||
bring it in range of ascii alphabet[ 65-90 | A-Z ] */
|
|
||||||
if (msg[i] != ' ')
|
|
||||||
{
|
|
||||||
cipher = cipher
|
|
||||||
+ (char) ((((a * (msg[i] - 'A')) + b) % 26) + 'A');
|
|
||||||
} else // else simply append space character
|
|
||||||
{
|
|
||||||
cipher += msg[i];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return cipher;
|
|
||||||
}
|
|
||||||
|
|
||||||
static String decryptCipher(String cipher)
|
|
||||||
{
|
|
||||||
String msg = "";
|
|
||||||
int a_inv = 0;
|
|
||||||
int flag = 0;
|
|
||||||
|
|
||||||
//Find a^-1 (the multiplicative inverse of a
|
|
||||||
//in the group of integers modulo m.)
|
|
||||||
for (int i = 0; i < 26; i++)
|
|
||||||
{
|
|
||||||
flag = (a * i) % 26;
|
|
||||||
|
|
||||||
// Check if (a*i)%26 == 1,
|
|
||||||
// then i will be the multiplicative inverse of a
|
|
||||||
if (flag == 1)
|
|
||||||
{
|
|
||||||
a_inv = i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for (int i = 0; i < cipher.length(); i++)
|
|
||||||
{
|
|
||||||
/*Applying decryption formula a^-1 ( x - b ) mod m
|
|
||||||
{here x is cipher[i] and m is 26} and added 'A'
|
|
||||||
to bring it in range of ASCII alphabet[ 65-90 | A-Z ] */
|
|
||||||
if (cipher.charAt(i) != ' ')
|
|
||||||
{
|
|
||||||
msg = msg + (char) (((a_inv *
|
|
||||||
((cipher.charAt(i) + 'A' - b)) % 26)) + 'A');
|
|
||||||
}
|
|
||||||
else //else simply append space character
|
|
||||||
{
|
|
||||||
msg += cipher.charAt(i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return msg;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Driver code
|
|
||||||
public static void main(String[] args)
|
|
||||||
{
|
|
||||||
String msg = "AFFINE CIPHER";
|
|
||||||
|
|
||||||
// Calling encryption function
|
|
||||||
String cipherText = encryptMessage(msg.toCharArray());
|
|
||||||
System.out.println("Encrypted Message is : " + cipherText);
|
|
||||||
|
|
||||||
// Calling Decryption function
|
|
||||||
System.out.println("Decrypted Message is: " + decryptCipher(cipherText));
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user