package com.maths; import java.util.ArrayList; /** * Class for circular convolution of two discrete signals using the convolution theorem. * * @author Ioannis Karavitsis * @version 1.0 */ public class CircularConvolutionFFT { /** * This method pads the signal with zeros until it reaches the new size. * * @param x The signal to be padded. * @param newSize The new size of the signal. */ private static void padding(ArrayList x, int newSize) { if (x.size() < newSize) { int diff = newSize - x.size(); for (int i = 0; i < diff; i++) x.add(new FFT.Complex()); } } /** * Discrete circular convolution function. It uses the convolution theorem for discrete signals: * convolved = IDFT(DFT(a)*DFT(b)). Then we use the FFT algorithm for faster calculations of the * two DFTs and the final IDFT. * *

More info: https://en.wikipedia.org/wiki/Convolution_theorem * * @param a The first signal. * @param b The other signal. * @return The convolved signal. */ public static ArrayList fftCircularConvolution( ArrayList a, ArrayList b) { int convolvedSize = Math.max( a.size(), b.size()); // The two signals must have the same size equal to the bigger one padding(a, convolvedSize); // Zero padding the smaller signal padding(b, convolvedSize); /* Find the FFTs of both signal. Here we use the Bluestein algorithm because we want the FFT to have the same length with the signal and not bigger */ FFTBluestein.fftBluestein(a, false); FFTBluestein.fftBluestein(b, false); ArrayList convolved = new ArrayList<>(); for (int i = 0; i < a.size(); i++) convolved.add(a.get(i).multiply(b.get(i))); // FFT(a)*FFT(b) FFTBluestein.fftBluestein(convolved, true); // IFFT return convolved; } }