package DataStructures.Graphs; import java.util.*; class BellmanFord /*Implementation of Bellman ford to detect negative cycles. Graph accepts inputs in form of edges which have start vertex, end vertex and weights. Vertices should be labelled with a number between 0 and total number of vertices-1,both inclusive*/ { int vertex, edge; private Edge edges[]; private int index = 0; BellmanFord(int v, int e) { vertex = v; edge = e; edges = new Edge[e]; } class Edge { int u, v; int w; /** * @param u Source Vertex * @param v End vertex * @param c Weight */ public Edge(int a, int b, int c) { u = a; v = b; w = c; } } /** * @param p[] Parent array which shows updates in edges * @param i Current vertex under consideration */ void printPath(int p[], int i) { if (p[i] == -1) // Found the path back to parent return; printPath(p, p[i]); System.out.print(i + " "); } public static void main(String args[]) { BellmanFord obj = new BellmanFord(0, 0); // Dummy object to call nonstatic variables obj.go(); } public void go() // Interactive run for understanding the class first time. Assumes source vertex is 0 and // shows distance to all vertices { Scanner sc = new Scanner(System.in); // Grab scanner object for user input int i, v, e, u, ve, w, j, neg = 0; System.out.println("Enter no. of vertices and edges please"); v = sc.nextInt(); e = sc.nextInt(); Edge arr[] = new Edge[e]; // Array of edges System.out.println("Input edges"); for (i = 0; i < e; i++) { u = sc.nextInt(); ve = sc.nextInt(); w = sc.nextInt(); arr[i] = new Edge(u, ve, w); } int dist[] = new int [v]; // Distance array for holding the finalized shortest path distance between source // and all vertices int p[] = new int[v]; // Parent array for holding the paths for (i = 0; i < v; i++) dist[i] = Integer.MAX_VALUE; // Initializing distance values dist[0] = 0; p[0] = -1; for (i = 0; i < v - 1; i++) { for (j = 0; j < e; j++) { if ((int) dist[arr[j].u] != Integer.MAX_VALUE && dist[arr[j].v] > dist[arr[j].u] + arr[j].w) { dist[arr[j].v] = dist[arr[j].u] + arr[j].w; // Update p[arr[j].v] = arr[j].u; } } } // Final cycle for negative checking for (j = 0; j < e; j++) if ((int) dist[arr[j].u] != Integer.MAX_VALUE && dist[arr[j].v] > dist[arr[j].u] + arr[j].w) { neg = 1; System.out.println("Negative cycle"); break; } if (neg == 0) // Go ahead and show results of computation { System.out.println("Distances are: "); for (i = 0; i < v; i++) System.out.println(i + " " + dist[i]); System.out.println("Path followed:"); for (i = 0; i < v; i++) { System.out.print("0 "); printPath(p, i); System.out.println(); } } sc.close(); } /** * @param source Starting vertex * @param end Ending vertex * @param Edge Array of edges */ public void show( int source, int end, Edge arr[]) // Just shows results of computation, if graph is passed to it. The graph should // be created by using addEdge() method and passed by calling getEdgeArray() method { int i, j, v = vertex, e = edge, neg = 0; double dist[] = new double [v]; // Distance array for holding the finalized shortest path distance between source // and all vertices int p[] = new int[v]; // Parent array for holding the paths for (i = 0; i < v; i++) dist[i] = Integer.MAX_VALUE; // Initializing distance values dist[source] = 0; p[source] = -1; for (i = 0; i < v - 1; i++) { for (j = 0; j < e; j++) { if ((int) dist[arr[j].u] != Integer.MAX_VALUE && dist[arr[j].v] > dist[arr[j].u] + arr[j].w) { dist[arr[j].v] = dist[arr[j].u] + arr[j].w; // Update p[arr[j].v] = arr[j].u; } } } // Final cycle for negative checking for (j = 0; j < e; j++) if ((int) dist[arr[j].u] != Integer.MAX_VALUE && dist[arr[j].v] > dist[arr[j].u] + arr[j].w) { neg = 1; System.out.println("Negative cycle"); break; } if (neg == 0) // Go ahead and show results of computaion { System.out.println("Distance is: " + dist[end]); System.out.println("Path followed:"); System.out.print(source + " "); printPath(p, end); System.out.println(); } } /** * @param x Source Vertex * @param y End vertex * @param z Weight */ public void addEdge(int x, int y, int z) // Adds unidirectional edge { edges[index++] = new Edge(x, y, z); } public Edge[] getEdgeArray() { return edges; } }