package Others; import java.util.InputMismatchException; import java.util.Scanner; /** * Class for finding the lowest base in which a given integer is a palindrome. * Includes auxiliary methods for converting between bases and reversing strings. *
* NOTE: There is potential for error, see note at line 63. * * @author RollandMichael * @version 2017.09.28 */ public class LowestBasePalindrome { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = 0; while (true) { try { System.out.print("Enter number: "); n = in.nextInt(); break; } catch (InputMismatchException e) { System.out.println("Invalid input!"); in.next(); } } System.out.println(n + " is a palindrome in base " + lowestBasePalindrome(n)); System.out.println(base2base(Integer.toString(n), 10, lowestBasePalindrome(n))); } /** * Given a number in base 10, returns the lowest base in which the * number is represented by a palindrome (read the same left-to-right * and right-to-left). * * @param num A number in base 10. * @return The lowest base in which num is a palindrome. */ public static int lowestBasePalindrome(int num) { int base, num2 = num; int digit; char digitC; boolean foundBase = false; String newNum = ""; String digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; while (!foundBase) { // Try from bases 2 to num-1 for (base = 2; base < num2; base++) { newNum = ""; while (num > 0) { // Obtain the first digit of n in the current base, // which is equivalent to the integer remainder of (n/base). // The next digit is obtained by dividing n by the base and // continuing the process of getting the remainder. This is done // until n is <=0 and the number in the new base is obtained. digit = (num % base); num /= base; // If the digit isn't in the set of [0-9][A-Z] (beyond base 36), its character // form is just its value in ASCII. // NOTE: This may cause problems, as the capital letters are ASCII values // 65-90. It may cause false positives when one digit is, for instance 10 and assigned // 'A' from the character array and the other is 65 and also assigned 'A'. // Regardless, the character is added to the representation of n // in the current base. if (digit >= digits.length()) { digitC = (char) (digit); newNum += digitC; continue; } newNum += digits.charAt(digit); } // Num is assigned back its original value for the next iteration. num = num2; // Auxiliary method reverses the number. String reverse = reverse(newNum); // If the number is read the same as its reverse, then it is a palindrome. // The current base is returned. if (reverse.equals(newNum)) { foundBase = true; return base; } } } // If all else fails, n is always a palindrome in base n-1. ("11") return num - 1; } private static String reverse(String str) { String reverse = ""; for (int i = str.length() - 1; i >= 0; i--) { reverse += str.charAt(i); } return reverse; } private static String base2base(String n, int b1, int b2) { // Declare variables: decimal value of n, // character of base b1, character of base b2, // and the string that will be returned. int decimalValue = 0, charB2; char charB1; String output = ""; // Go through every character of n for (int i = 0; i < n.length(); i++) { // store the character in charB1 charB1 = n.charAt(i); // if it is a non-number, convert it to a decimal value >9 and store it in charB2 if (charB1 >= 'A' && charB1 <= 'Z') charB2 = 10 + (charB1 - 'A'); // Else, store the integer value in charB2 else charB2 = charB1 - '0'; // Convert the digit to decimal and add it to the // decimalValue of n decimalValue = decimalValue * b1 + charB2; } // Converting the decimal value to base b2: // A number is converted from decimal to another base // by continuously dividing by the base and recording // the remainder until the quotient is zero. The number in the // new base is the remainders, with the last remainder // being the left-most digit. // While the quotient is NOT zero: while (decimalValue != 0) { // If the remainder is a digit < 10, simply add it to // the left side of the new number. if (decimalValue % b2 < 10) output = Integer.toString(decimalValue % b2) + output; // If the remainder is >= 10, add a character with the // corresponding value to the new number. (A = 10, B = 11, C = 12, ...) else output = (char) ((decimalValue % b2) + 55) + output; // Divide by the new base again decimalValue /= b2; } return output; } }