package test; import java.lang.*; import java.io.*; import java.util.*; /** * Algorithm explanation https://www.educative.io/edpresso/longest-palindromic-subsequence-algorithm */ public class LongestPalindromicSubsequence { public static void main(String[] args) { String a = "BBABCBCAB"; String b = "BABCBAB"; String aLPS = LPS(a); String bLPS = LPS(b); System.out.println(a + " => " + aLPS); System.out.println(b + " => " + bLPS); } public static String LPS(String original) throws IllegalArgumentException { StringBuilder reverse = new StringBuilder(original); reverse = reverse.reverse(); return recursiveLPS(original, reverse.toString()); } private static String recursiveLPS(String original, String reverse) { String bestResult = ""; //no more chars, then return empty if(original.length() == 0 || reverse.length() == 0) { bestResult = ""; } else { //if the last chars match, then remove it from both strings and recur if(original.charAt(original.length() - 1) == reverse.charAt(reverse.length() - 1)) { String bestSubResult = recursiveLPS(original.substring(0, original.length() - 1), reverse.substring(0, reverse.length() - 1)); bestResult = reverse.charAt(reverse.length() - 1) + bestSubResult; } else { //otherwise (1) ignore the last character of reverse, and recur on original and updated reverse again //(2) ignore the last character of original and recur on the updated original and reverse again //then select the best result from these two subproblems. String bestSubResult1 = recursiveLPS(original, reverse.substring(0, reverse.length() - 1)); String bestSubResult2 = recursiveLPS(original.substring(0, original.length() - 1), reverse); if(bestSubResult1.length()>bestSubResult2.length()) { bestResult = bestSubResult1; } else { bestResult = bestSubResult2; } } } return bestResult; } }