package Maths; import java.util.TreeMap; public class SimpsonIntegration{ /* * Calculate definite integrals by using Composite Simpson's rule. * Wiki: https://en.wikipedia.org/wiki/Simpson%27s_rule#Composite_Simpson's_rule * Given f a function and an even number N of intervals that divide the integration interval e.g. [a, b], * we calculate the step h = (b-a)/N and create a table that contains all the x points of * the real axis xi = x0 + i*h and the value f(xi) that corresponds to these xi. * * To evaluate the integral i use the formula below: * I = h/3 * {f(x0) + 4*f(x1) + 2*f(x2) + 4*f(x3) + ... + 2*f(xN-2) + 4*f(xN-1) + f(xN)} * */ public static void main(String[] args) { SimpsonIntegration integration = new SimpsonIntegration(); // Give random data for the example purposes int N = 16; double a = 1; double b = 3; // Check so that N is even if(N%2 != 0){ System.out.println("N must be even number for Simpsons method. Aborted"); System.exit(1); } // Calculate step h and evaluate the integral double h = (b-a) / (double) N; double integralEvaluation = integration.simpsonsMethod(N, h, a); System.out.println("The integral is equal to: " + integralEvaluation); } /* * @param N: Number of intervals (must be even number N=2*k) * @param h: Step h = (b-a)/N * @param a: Starting point of the interval * @param b: Ending point of the interval * * The interpolation points xi = x0 + i*h are stored the treeMap data * * @return result of the integral evaluation */ public double simpsonsMethod(int N, double h, double a){ TreeMap data = new TreeMap<>(); // Key: i, Value: f(xi) double temp; double xi = a; // Initialize the variable xi = x0 + 0*h // Create the table of xi and yi points for(int i=0; i<=N; i++){ temp = f(xi); // Get the value of the function at that point data.put(i, temp); xi += h; // Increase the xi to the next point } // Apply the formula double integralEvaluation = 0; for(int i=0; i