package Maths; /** * @file * * @brief Calculates the [Cross Product](https://en.wikipedia.org/wiki/Cross_product) and the magnitude of two mathematical 3D vectors. * * * @details Cross Product of two vectors gives a vector. * Direction Ratios of a vector are the numeric parts of the given vector. They are the tree parts of the * vector which determine the magnitude (value) of the vector. * The method of finding a cross product is the same as finding the determinant of an order 3 matrix consisting * of the first row with unit vectors of magnitude 1, the second row with the direction ratios of the * first vector and the third row with the direction ratios of the second vector. * The magnitude of a vector is it's value expressed as a number. * Let the direction ratios of the first vector, P be: a, b, c * Let the direction ratios of the second vector, Q be: x, y, z * Therefore the calculation for the cross product can be arranged as: * * ``` * P x Q: * 1 1 1 * a b c * x y z * ``` * * The direction ratios (DR) are calculated as follows: * 1st DR, J: (b * z) - (c * y) * 2nd DR, A: -((a * z) - (c * x)) * 3rd DR, N: (a * y) - (b * x) * * Therefore, the direction ratios of the cross product are: J, A, N * The following Java Program calculates the direction ratios of the cross products of two vector. * The program uses a function, cross() for doing so. * The direction ratios for the first and the second vector has to be passed one by one seperated by a space character. * * Magnitude of a vector is the square root of the sum of the squares of the direction ratios. * * * For maintaining filename consistency, Vector class has been termed as VectorCrossProduct * * @author [Syed](https://github.com/roeticvampire) */ public class VectorCrossProduct { int x; int y; int z; //Default constructor, initialises all three Direction Ratios to 0 VectorCrossProduct(){ x=0; y=0; z=0; } /** * constructor, initialises Vector with given Direction Ratios * @param _x set to x * @param _y set to y * @param _z set to z */ VectorCrossProduct(int _x,int _y, int _z){ x=_x; y=_y; z=_z; } /** * Returns the magnitude of the vector * @return double */ double magnitude(){ return Math.sqrt(x*x +y*y +z*z); } /** * Returns the dot product of the current vector with a given vector * @param b: the second vector * @return int: the dot product */ int dotProduct(VectorCrossProduct b){ return x*b.x + y*b.y +z*b.z; } /** * Returns the cross product of the current vector with a given vector * @param b: the second vector * @return vectorCrossProduct: the cross product */ VectorCrossProduct crossProduct(VectorCrossProduct b){ VectorCrossProduct product=new VectorCrossProduct(); product.x = (y * b.z) - (z * b.y); product.y = -((x * b.z) - (z * b.x)); product.z = (x * b.y) - (y * b.x); return product; } /** * Display the Vector */ void displayVector(){ System.out.println("x : "+x+"\ty : "+y+"\tz : "+z); } public static void main(String[] args) { test(); } static void test(){ //Create two vectors VectorCrossProduct A=new VectorCrossProduct(1,-2,3); VectorCrossProduct B=new VectorCrossProduct(2,0,3); //Determine cross product VectorCrossProduct crossProd=A.crossProduct(B); crossProd.displayVector(); //Determine dot product int dotProd=A.dotProduct(B); System.out.println("Dot Product of A and B: "+dotProd); } }