package DynamicProgramming; /** A DynamicProgramming based solution for 0-1 Knapsack problem */ public class Knapsack { private static int knapSack(int W, int wt[], int val[], int n) throws IllegalArgumentException { if (wt == null || val == null) throw new IllegalArgumentException(); int i, w; int rv[][] = new int[n + 1][W + 1]; // rv means return value // Build table rv[][] in bottom up manner for (i = 0; i <= n; i++) { for (w = 0; w <= W; w++) { if (i == 0 || w == 0) rv[i][w] = 0; else if (wt[i - 1] <= w) rv[i][w] = Math.max(val[i - 1] + rv[i - 1][w - wt[i - 1]], rv[i - 1][w]); else rv[i][w] = rv[i - 1][w]; } } return rv[n][W]; } // Driver program to test above function public static void main(String args[]) { int val[] = new int[] {50, 100, 130}; int wt[] = new int[] {10, 20, 40}; int W = 50; int n = val.length; System.out.println(knapSack(W, wt, val, n)); } }