package DynamicProgramming; import java.util.Scanner; /** @author Afrizal Fikri (https://github.com/icalF) */ public class LongestIncreasingSubsequence { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] = sc.nextInt(); } System.out.println(LIS(arr)); System.out.println(findLISLen(arr)); sc.close(); } private static int upperBound(int[] ar, int l, int r, int key) { while (l < r - 1) { int m = (l + r) >>> 1; if (ar[m] >= key) r = m; else l = m; } return r; } private static int LIS(int[] array) { int N = array.length; if (N == 0) return 0; int[] tail = new int[N]; // always points empty slot in tail int length = 1; tail[0] = array[0]; for (int i = 1; i < N; i++) { // new smallest value if (array[i] < tail[0]) tail[0] = array[i]; // array[i] extends largest subsequence else if (array[i] > tail[length - 1]) tail[length++] = array[i]; // array[i] will become end candidate of an existing subsequence or // Throw away larger elements in all LIS, to make room for upcoming grater elements than // array[i] // (and also, array[i] would have already appeared in one of LIS, identify the location and // replace it) else tail[upperBound(tail, -1, length - 1, array[i])] = array[i]; } return length; } /** @author Alon Firestein (https://github.com/alonfirestein) */ // A function for finding the length of the LIS algorithm in O(nlogn) complexity. public static int findLISLen(int a[]) { int size = a.length; int arr[] = new int[size]; arr[0] = a[0]; int lis = 1; for (int i = 1; i < size; i++) { int index = binarySearchBetween(arr, lis, a[i]); arr[index] = a[i]; if (index > lis) lis++; } return lis; } // O(logn) private static int binarySearchBetween(int[] t, int end, int key) { int left = 0; int right = end; if (key < t[0]) return 0; if (key > t[end]) return end + 1; while (left < right - 1) { int middle = (left + right) / 2; if (t[middle] < key) left = middle; else right = middle; } return right; } }