package DynamicProgramming; // Here is the top-down approach of // dynamic programming public class MemoizationTechniqueKnapsack { // A utility function that returns // maximum of two integers static int max(int a, int b) { return (a > b) ? a : b; } // Returns the value of maximum profit static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) { // Base condition if (n == 0 || W == 0) return 0; if (dp[n][W] != -1) return dp[n][W]; if (wt[n - 1] > W) // Store the value of function call // stack in table before return return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp); else // Return value of table after storing return dp[n][W] = max( (val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)), knapSackRec(W, wt, val, n - 1, dp)); } static int knapSack(int W, int wt[], int val[], int N) { // Declare the table dynamically int dp[][] = new int[N + 1][W + 1]; // Loop to initially filled the // table with -1 for (int i = 0; i < N + 1; i++) for (int j = 0; j < W + 1; j++) dp[i][j] = -1; return knapSackRec(W, wt, val, N, dp); } // Driver Code public static void main(String[] args) { int val[] = {60, 100, 120}; int wt[] = {10, 20, 30}; int W = 50; int N = val.length; System.out.println(knapSack(W, wt, val, N)); } }