package DynamicProgramming; import java.util.Arrays; /** * Recursive Solution for 0-1 knapsack with memoization */ public class KnapsackMemoization { private static int[][] t; // Returns the maximum value that can // be put in a knapsack of capacity W public static int knapsack(int[] wt, int[] value, int W, int n) { if(t[n][W] != -1) { return t[n][W]; } if (n == 0 || W == 0) { return 0; } if (wt[n - 1] <= W) { t[n-1][W-wt[n-1]] = knapsack(wt, value, W - wt[n - 1], n - 1); // Include item in the bag. In that case add the value of the item and call for the remaining items int tmp1 = value[n - 1] + t[n-1][W-wt[n-1]]; // Don't include the nth item in the bag anl call for remaining item without reducing the weight int tmp2 = knapsack(wt, value, W, n - 1); t[n-1][W] = tmp2; // include the larger one int tmp = tmp1 > tmp2 ? tmp1 : tmp2; t[n][W] = tmp; return tmp; // If Weight for the item is more than the desired weight then don't include it // Call for rest of the n-1 items } else if (wt[n - 1] > W) { t[n][W] = knapsack(wt, value, W, n - 1); return t[n][W]; } return -1; } // Driver code public static void main(String args[]) { int[] wt = {1, 3, 4, 5}; int[] value = {1, 4, 5, 7}; int W = 10; t = new int[wt.length+1][W+1]; Arrays.stream(t).forEach(a -> Arrays.fill(a, -1)); int res = knapsack(wt, value, W, wt.length); System.out.println("Maximum knapsack value " + res); } }