/** * The Sieve of Eratosthenes is an algorithm use to find prime numbers, * up to a given value. * Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif * (This illustration is also in the github repository) * * @author Unknown * */ public class FindingPrimes{ /** * The Main method * * @param args Command line arguments */ public static void main(String args[]){ SOE(20); //Example: Finds all the primes up to 20 } /** * The method implementing the Sieve of Eratosthenes * * @param n Number to perform SOE on */ public static void SOE(int n){ boolean sieve[] = new boolean[n]; int check = (int)Math.round(Math.sqrt(n)); //No need to check for multiples past the square root of n sieve[0] = false; sieve[1] = false; for(int i = 2; i < n; i++) sieve[i] = true; //Set every index to true except index 0 and 1 for(int i = 2; i< check; i++){ if(sieve[i]==true) //If i is a prime for(int j = i+i; j < n; j+=i) //Step through the array in increments of i(the multiples of the prime) sieve[j] = false; //Set every multiple of i to false } for(int i = 0; i< n; i++){ if(sieve[i]==true) System.out.print(i+" "); //In this example it will print 2 3 5 7 11 13 17 19 } } }