package DynamicProgramming; // A Dynamic Programming based solution // for 0-1 Knapsack problem public class DyanamicProgrammingKnapsack { static int max(int a, int b) { return (a > b) ? a : b; } // Returns the maximum value that can // be put in a knapsack of capacity W static int knapSack(int W, int wt[], int val[], int n) { int i, w; int K[][] = new int[n + 1][W + 1]; // Build table K[][] in bottom up manner for (i = 0; i <= n; i++) { for (w = 0; w <= W; w++) { if (i == 0 || w == 0) K[i][w] = 0; else if (wt[i - 1] <= w) K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]); else K[i][w] = K[i - 1][w]; } } return K[n][W]; } // Driver code public static void main(String args[]) { int val[] = new int[] {60, 100, 120}; int wt[] = new int[] {10, 20, 30}; int W = 50; int n = val.length; System.out.println(knapSack(W, wt, val, n)); } }