// A Dynamic Programming based solution for 0-1 Knapsack problem public class Knapsack { private static int knapSack(int W, int wt[], int val[], int n) { int i, w; int rv[][] = new int[n+1][W+1]; //rv means return value // Build table rv[][] in bottom up manner for (i = 0; i <= n; i++) { for (w = 0; w <= W; w++) { if (i==0 || w==0) rv[i][w] = 0; else if (wt[i-1] <= w) rv[i][w] = Math.max(val[i-1] + rv[i-1][w-wt[i-1]], rv[i-1][w]); else rv[i][w] = rv[i-1][w]; } } return rv[n][W]; } // Driver program to test above function public static void main(String args[]) { int val[] = new int[]{50, 100, 130}; int wt[] = new int[]{10, 20, 40}; int W = 50; int n = val.length; System.out.println(knapSack(W, wt, val, n)); } }