package Searches; import DevUtils.Searches.SearchAlgorithm; /* * Fibonacci Search is a popular algorithm which finds the position of a target value in * a sorted array * * The time complexity for this search algorithm is O(log3(n)) * The space complexity for this search algorithm is O(1) * @author Kanakalatha Vemuru (https://github.com/KanakalathaVemuru) */ public class FibonacciSearch implements SearchAlgorithm { /** * @param array is a sorted array where the element has to be searched * @param key is an element whose position has to be found * @param is any comparable type * @return index of the element */ @Override public > int find(T[] array, T key) { int fibMinus1 = 1; int fibMinus2 = 0; int fibNumber = fibMinus1 + fibMinus2; int n = array.length; while (fibNumber < n) { fibMinus2 = fibMinus1; fibMinus1 = fibNumber; fibNumber = fibMinus2 + fibMinus1; } int offset = -1; while (fibNumber > 1) { int i = Math.min(offset + fibMinus2, n - 1); if (array[i].compareTo(key) < 0) { fibNumber = fibMinus1; fibMinus1 = fibMinus2; fibMinus2 = fibNumber - fibMinus1; offset = i; } else if (array[i].compareTo(key) > 0) { fibNumber = fibMinus2; fibMinus1 = fibMinus1 - fibMinus2; fibMinus2 = fibNumber - fibMinus1; } else { return i; } } if (fibMinus1 == 1 && array[offset + 1] == key) { return offset + 1; } return -1; } // Driver Program public static void main(String[] args) { Integer[] integers = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}; int size = integers.length; Integer shouldBeFound = 128; FibonacciSearch fsearch = new FibonacciSearch(); int atIndex = fsearch.find(integers, shouldBeFound); System.out.println( "Should be found: " + shouldBeFound + ". Found "+ integers[atIndex] + " at index "+ atIndex +". An array length " + size); } }