/* * Problem Statement: - * Find Longest Alternating Subsequence * A sequence {x1, x2, .. xn} is alternating sequence if its elements satisfy one of the following relations : x1 < x2 > x3 < x4 > x5 < …. xn or x1 > x2 < x3 > x4 < x5 > …. xn */ import java.io.*; public class LongestAlternatingSubsequence { /* Function to return longest alternating subsequence length*/ static int AlternatingLength(int arr[], int n){ /* las[i][0] = Length of the longest alternating subsequence ending at index i and last element is greater than its previous element las[i][1] = Length of the longest alternating subsequence ending at index i and last element is smaller than its previous element */ int las[][] = new int[n][2]; // las = LongestAlternatingSubsequence for (int i = 0; i < n; i++) las[i][0] = las[i][1] = 1; int result = 1; // Initialize result /* Compute values in bottom up manner */ for (int i = 1; i < n; i++){ /* Consider all elements as previous of arr[i]*/ for (int j = 0; j < i; j++){ /* If arr[i] is greater, then check with las[j][1] */ if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) las[i][0] = las[j][1] + 1; /* If arr[i] is smaller, then check with las[j][0]*/ if( arr[j] > arr[i] && las[i][1] < las[j][0] + 1) las[i][1] = las[j][0] + 1; } /* Pick maximum of both values at index i */ if (result < Math.max(las[i][0], las[i][1])) result = Math.max(las[i][0], las[i][1]); } return result; } public static void main(String[] args) { int arr[] = { 10, 22, 9, 33, 49,50, 31, 60 }; int n = arr.length; System.out.println("Length of Longest "+"alternating subsequence is " +AlternatingLength(arr, n)); } }