69 lines
1.7 KiB
Java
69 lines
1.7 KiB
Java
/*
|
|
|
|
* Problem Statement: -
|
|
* Find Longest Alternating Subsequence
|
|
|
|
* A sequence {x1, x2, .. xn} is alternating sequence if its elements satisfy one of the following relations :
|
|
|
|
x1 < x2 > x3 < x4 > x5 < …. xn or
|
|
x1 > x2 < x3 > x4 < x5 > …. xn
|
|
*/
|
|
|
|
import java.io.*;
|
|
|
|
public class LongestAlternatingSubsequence {
|
|
|
|
/* Function to return longest alternating subsequence length*/
|
|
static int AlternatingLength(int arr[], int n){
|
|
/*
|
|
|
|
las[i][0] = Length of the longest
|
|
alternating subsequence ending at
|
|
index i and last element is
|
|
greater than its previous element
|
|
|
|
las[i][1] = Length of the longest
|
|
alternating subsequence ending at
|
|
index i and last element is
|
|
smaller than its previous
|
|
element
|
|
|
|
*/
|
|
int las[][] = new int[n][2]; // las = LongestAlternatingSubsequence
|
|
|
|
for (int i = 0; i < n; i++)
|
|
las[i][0] = las[i][1] = 1;
|
|
|
|
int result = 1; // Initialize result
|
|
|
|
/* Compute values in bottom up manner */
|
|
for (int i = 1; i < n; i++){
|
|
|
|
/* Consider all elements as previous of arr[i]*/
|
|
for (int j = 0; j < i; j++){
|
|
|
|
/* If arr[i] is greater, then check with las[j][1] */
|
|
if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1)
|
|
las[i][0] = las[j][1] + 1;
|
|
|
|
/* If arr[i] is smaller, then check with las[j][0]*/
|
|
if( arr[j] > arr[i] && las[i][1] < las[j][0] + 1)
|
|
las[i][1] = las[j][0] + 1;
|
|
}
|
|
|
|
/* Pick maximum of both values at index i */
|
|
if (result < Math.max(las[i][0], las[i][1]))
|
|
result = Math.max(las[i][0], las[i][1]);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
public static void main(String[] args)
|
|
{
|
|
int arr[] = { 10, 22, 9, 33, 49,50, 31, 60 };
|
|
int n = arr.length;
|
|
System.out.println("Length of Longest "+"alternating subsequence is " +AlternatingLength(arr, n));
|
|
}
|
|
}
|