56 lines
1.8 KiB
Java
56 lines
1.8 KiB
Java
package Maths;
|
|
|
|
import java.util.ArrayList;
|
|
|
|
/**
|
|
* Class for circular convolution of two discrete signals using the convolution theorem.
|
|
*
|
|
* @author Ioannis Karavitsis
|
|
* @version 1.0
|
|
*/
|
|
public class CircularConvolutionFFT {
|
|
/**
|
|
* This method pads the signal with zeros until it reaches the new size.
|
|
*
|
|
* @param x The signal to be padded.
|
|
* @param newSize The new size of the signal.
|
|
*/
|
|
private static void padding(ArrayList<FFT.Complex> x, int newSize) {
|
|
if (x.size() < newSize) {
|
|
int diff = newSize - x.size();
|
|
for (int i = 0; i < diff; i++) x.add(new FFT.Complex());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Discrete circular convolution function. It uses the convolution theorem for discrete signals:
|
|
* convolved = IDFT(DFT(a)*DFT(b)). Then we use the FFT algorithm for faster calculations of the
|
|
* two DFTs and the final IDFT.
|
|
*
|
|
* <p>More info: https://en.wikipedia.org/wiki/Convolution_theorem
|
|
*
|
|
* @param a The first signal.
|
|
* @param b The other signal.
|
|
* @return The convolved signal.
|
|
*/
|
|
public static ArrayList<FFT.Complex> fftCircularConvolution(
|
|
ArrayList<FFT.Complex> a, ArrayList<FFT.Complex> b) {
|
|
int convolvedSize =
|
|
Math.max(
|
|
a.size(), b.size()); // The two signals must have the same size equal to the bigger one
|
|
padding(a, convolvedSize); // Zero padding the smaller signal
|
|
padding(b, convolvedSize);
|
|
|
|
/* Find the FFTs of both signal. Here we use the Bluestein algorithm because we want the FFT to have the same length with the signal and not bigger */
|
|
FFTBluestein.fftBluestein(a, false);
|
|
FFTBluestein.fftBluestein(b, false);
|
|
ArrayList<FFT.Complex> convolved = new ArrayList<>();
|
|
|
|
for (int i = 0; i < a.size(); i++) convolved.add(a.get(i).multiply(b.get(i))); // FFT(a)*FFT(b)
|
|
|
|
FFTBluestein.fftBluestein(convolved, true); // IFFT
|
|
|
|
return convolved;
|
|
}
|
|
}
|