126 lines
3.4 KiB
Java
126 lines
3.4 KiB
Java
package DataStructures.Heaps;
|
|
|
|
/**
|
|
* Minimum Priority Queue It is a part of heap data structure A heap is a specific tree based data
|
|
* structure in which all the nodes of tree are in a specific order. that is the children are
|
|
* arranged in some respect of their parents, can either be greater or less than the parent. This
|
|
* makes it a min priority queue or max priority queue.
|
|
*
|
|
* <p>
|
|
*
|
|
* <p>Functions: insert, delete, peek, isEmpty, print, heapSort, sink
|
|
*/
|
|
public class MinPriorityQueue {
|
|
private int[] heap;
|
|
private int capacity;
|
|
private int size;
|
|
|
|
// calss the constructor and initializes the capacity
|
|
MinPriorityQueue(int c) {
|
|
this.capacity = c;
|
|
this.size = 0;
|
|
this.heap = new int[c + 1];
|
|
}
|
|
|
|
// inserts the key at the end and rearranges it
|
|
// so that the binary heap is in appropriate order
|
|
public void insert(int key) {
|
|
if (this.isFull()) return;
|
|
this.heap[this.size + 1] = key;
|
|
int k = this.size + 1;
|
|
while (k > 1) {
|
|
if (this.heap[k] < this.heap[k / 2]) {
|
|
int temp = this.heap[k];
|
|
this.heap[k] = this.heap[k / 2];
|
|
this.heap[k / 2] = temp;
|
|
}
|
|
k = k / 2;
|
|
}
|
|
this.size++;
|
|
}
|
|
|
|
// returns the highest priority value
|
|
public int peek() {
|
|
return this.heap[1];
|
|
}
|
|
|
|
// returns boolean value whether the heap is empty or not
|
|
public boolean isEmpty() {
|
|
if (0 == this.size) return true;
|
|
return false;
|
|
}
|
|
|
|
// returns boolean value whether the heap is full or not
|
|
public boolean isFull() {
|
|
if (this.size == this.capacity) return true;
|
|
return false;
|
|
}
|
|
|
|
// prints the heap
|
|
public void print() {
|
|
for (int i = 1; i <= this.capacity; i++) System.out.print(this.heap[i] + " ");
|
|
System.out.println();
|
|
}
|
|
|
|
// heap sorting can be done by performing
|
|
// delete function to the number of times of the size of the heap
|
|
// it returns reverse sort because it is a min priority queue
|
|
public void heapSort() {
|
|
for (int i = 1; i < this.capacity; i++) this.delete();
|
|
}
|
|
|
|
// this function reorders the heap after every delete function
|
|
private void sink() {
|
|
int k = 1;
|
|
while (2 * k <= this.size || 2 * k + 1 <= this.size) {
|
|
int minIndex;
|
|
if (this.heap[2 * k] >= this.heap[k]) {
|
|
if (2 * k + 1 <= this.size && this.heap[2 * k + 1] >= this.heap[k]) {
|
|
break;
|
|
} else if (2 * k + 1 > this.size) {
|
|
break;
|
|
}
|
|
}
|
|
if (2 * k + 1 > this.size) {
|
|
minIndex = this.heap[2 * k] < this.heap[k] ? 2 * k : k;
|
|
} else {
|
|
if (this.heap[k] > this.heap[2 * k] || this.heap[k] > this.heap[2 * k + 1]) {
|
|
minIndex = this.heap[2 * k] < this.heap[2 * k + 1] ? 2 * k : 2 * k + 1;
|
|
} else {
|
|
minIndex = k;
|
|
}
|
|
}
|
|
int temp = this.heap[k];
|
|
this.heap[k] = this.heap[minIndex];
|
|
this.heap[minIndex] = temp;
|
|
k = minIndex;
|
|
}
|
|
}
|
|
|
|
// deletes the highest priority value from the heap
|
|
public int delete() {
|
|
int min = this.heap[1];
|
|
this.heap[1] = this.heap[this.size];
|
|
this.heap[this.size] = min;
|
|
this.size--;
|
|
this.sink();
|
|
return min;
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
// testing
|
|
MinPriorityQueue q = new MinPriorityQueue(8);
|
|
q.insert(5);
|
|
q.insert(2);
|
|
q.insert(4);
|
|
q.insert(1);
|
|
q.insert(7);
|
|
q.insert(6);
|
|
q.insert(3);
|
|
q.insert(8);
|
|
q.print(); // [ 1, 2, 3, 5, 7, 6, 4, 8 ]
|
|
q.heapSort();
|
|
q.print(); // [ 8, 7, 6, 5, 4, 3, 2, 1 ]
|
|
}
|
|
}
|