37 lines
962 B
Java
37 lines
962 B
Java
package DynamicProgramming;
|
|
|
|
// A Dynamic Programming based solution
|
|
// for 0-1 Knapsack problem
|
|
public class DyanamicProgrammingKnapsack {
|
|
static int max(int a, int b) {
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
// Returns the maximum value that can
|
|
// be put in a knapsack of capacity W
|
|
static int knapSack(int W, int wt[], int val[], int n) {
|
|
int i, w;
|
|
int K[][] = new int[n + 1][W + 1];
|
|
|
|
// Build table K[][] in bottom up manner
|
|
for (i = 0; i <= n; i++) {
|
|
for (w = 0; w <= W; w++) {
|
|
if (i == 0 || w == 0) K[i][w] = 0;
|
|
else if (wt[i - 1] <= w) K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]);
|
|
else K[i][w] = K[i - 1][w];
|
|
}
|
|
}
|
|
|
|
return K[n][W];
|
|
}
|
|
|
|
// Driver code
|
|
public static void main(String args[]) {
|
|
int val[] = new int[] {60, 100, 120};
|
|
int wt[] = new int[] {10, 20, 30};
|
|
int W = 50;
|
|
int n = val.length;
|
|
System.out.println(knapSack(W, wt, val, n));
|
|
}
|
|
}
|