51 lines
1.3 KiB
Java
51 lines
1.3 KiB
Java
package Others;
|
|
|
|
import java.util.Arrays;
|
|
|
|
/**
|
|
* The two pointer technique is a useful tool to utilize when searching for pairs in a sorted array.
|
|
*
|
|
* <p>link: https://www.geeksforgeeks.org/two-pointers-technique/
|
|
*/
|
|
class TwoPointers {
|
|
|
|
public static void main(String[] args) {
|
|
int[] arr = {10, 20, 35, 50, 75, 80};
|
|
int key = 70;
|
|
assert isPairedSum(arr, key); /* 20 + 60 == 70 */
|
|
|
|
arr = new int[] {1, 2, 3, 4, 5, 6, 7};
|
|
key = 13;
|
|
assert isPairedSum(arr, key); /* 6 + 7 == 13 */
|
|
|
|
key = 14;
|
|
assert !isPairedSum(arr, key);
|
|
}
|
|
|
|
/**
|
|
* Given a sorted array arr (sorted in ascending order). Find if there exists any pair of elements
|
|
* such that their sum is equal to key.
|
|
*
|
|
* @param arr the array contains elements
|
|
* @param key the number to search
|
|
* @return {@code true} if there exists a pair of elements, {@code false} otherwise.
|
|
*/
|
|
private static boolean isPairedSum(int[] arr, int key) {
|
|
/* array sorting is necessary for this algorithm to function correctly */
|
|
Arrays.sort(arr);
|
|
int i = 0; /* index of first element */
|
|
int j = arr.length - 1; /* index of last element */
|
|
|
|
while (i < j) {
|
|
if (arr[i] + arr[j] == key) {
|
|
return true;
|
|
} else if (arr[i] + arr[j] < key) {
|
|
i++;
|
|
} else {
|
|
j--;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
}
|