606 lines
27 KiB
Java
606 lines
27 KiB
Java
package ciphers;
|
|
|
|
import java.math.BigInteger;
|
|
import java.util.Scanner;
|
|
|
|
/**
|
|
* This class is build to demonstrate the application of the AES-algorithm on a
|
|
* single 128-Bit block of data.
|
|
*
|
|
* @see khalil2535
|
|
*/
|
|
public class AES {
|
|
|
|
/**
|
|
* Precalculated values for x to the power of 2 in Rijndaels galois field. Used
|
|
* as 'RCON' during the key expansion.
|
|
*/
|
|
private static final int[] RCON = { 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8,
|
|
0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91,
|
|
0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
|
|
0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
|
|
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
|
|
0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
|
|
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
|
|
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
|
|
0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
|
|
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
|
|
0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25,
|
|
0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20,
|
|
0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4,
|
|
0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33,
|
|
0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d };
|
|
|
|
/**
|
|
* Rijndael S-box Substitution table used for encryption in the subBytes step,
|
|
* as well as the key expansion.
|
|
*/
|
|
private static final int[] SBOX = { 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE,
|
|
0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72,
|
|
0xC0, 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15, 0x04,
|
|
0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C,
|
|
0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED, 0x20,
|
|
0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF, 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33,
|
|
0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC,
|
|
0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E,
|
|
0x3D, 0x64, 0x5D, 0x19, 0x73, 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE,
|
|
0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4,
|
|
0x79, 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08, 0xBA,
|
|
0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5,
|
|
0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11, 0x69,
|
|
0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF, 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42,
|
|
0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16 };
|
|
|
|
/**
|
|
* Inverse Rijndael S-box Substitution table used for decryption in the
|
|
* subBytesDec step.
|
|
*/
|
|
private static final int[] INVERSE_SBOX = { 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
|
|
0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE,
|
|
0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
|
|
0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8,
|
|
0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
|
|
0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84, 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC,
|
|
0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
|
|
0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2,
|
|
0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73, 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
|
|
0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18,
|
|
0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
|
|
0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51,
|
|
0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
|
|
0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77,
|
|
0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D };
|
|
|
|
/**
|
|
* Precalculated lookup table for galois field multiplication by 2 used in the
|
|
* MixColums step during encryption.
|
|
*/
|
|
private static final int[] MULT2 = { 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18,
|
|
0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c,
|
|
0x3e, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60,
|
|
0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e, 0x80, 0x82, 0x84,
|
|
0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e, 0xa0, 0xa2, 0xa4, 0xa6, 0xa8,
|
|
0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe, 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc,
|
|
0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde, 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0,
|
|
0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe, 0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f,
|
|
0x0d, 0x03, 0x01, 0x07, 0x05, 0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23,
|
|
0x21, 0x27, 0x25, 0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47,
|
|
0x45, 0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65, 0x9b,
|
|
0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85, 0xbb, 0xb9, 0xbf,
|
|
0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5, 0xdb, 0xd9, 0xdf, 0xdd, 0xd3,
|
|
0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5, 0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7,
|
|
0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5 };
|
|
|
|
/**
|
|
* Precalculated lookup table for galois field multiplication by 3 used in the
|
|
* MixColums step during encryption.
|
|
*/
|
|
private static final int[] MULT3 = { 0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 0x18, 0x1b, 0x1e, 0x1d, 0x14,
|
|
0x17, 0x12, 0x11, 0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39, 0x28, 0x2b, 0x2e, 0x2d, 0x24, 0x27, 0x22,
|
|
0x21, 0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69, 0x78, 0x7b, 0x7e, 0x7d, 0x74, 0x77, 0x72, 0x71, 0x50,
|
|
0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59, 0x48, 0x4b, 0x4e, 0x4d, 0x44, 0x47, 0x42, 0x41, 0xc0, 0xc3, 0xc6,
|
|
0xc5, 0xcc, 0xcf, 0xca, 0xc9, 0xd8, 0xdb, 0xde, 0xdd, 0xd4, 0xd7, 0xd2, 0xd1, 0xf0, 0xf3, 0xf6, 0xf5, 0xfc,
|
|
0xff, 0xfa, 0xf9, 0xe8, 0xeb, 0xee, 0xed, 0xe4, 0xe7, 0xe2, 0xe1, 0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa,
|
|
0xa9, 0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 0xb7, 0xb2, 0xb1, 0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99, 0x88,
|
|
0x8b, 0x8e, 0x8d, 0x84, 0x87, 0x82, 0x81, 0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92, 0x83, 0x80, 0x85,
|
|
0x86, 0x8f, 0x8c, 0x89, 0x8a, 0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2, 0xb3, 0xb0, 0xb5, 0xb6, 0xbf,
|
|
0xbc, 0xb9, 0xba, 0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2, 0xe3, 0xe0, 0xe5, 0xe6, 0xef, 0xec, 0xe9,
|
|
0xea, 0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2, 0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 0xdc, 0xd9, 0xda, 0x5b,
|
|
0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52, 0x43, 0x40, 0x45, 0x46, 0x4f, 0x4c, 0x49, 0x4a, 0x6b, 0x68, 0x6d,
|
|
0x6e, 0x67, 0x64, 0x61, 0x62, 0x73, 0x70, 0x75, 0x76, 0x7f, 0x7c, 0x79, 0x7a, 0x3b, 0x38, 0x3d, 0x3e, 0x37,
|
|
0x34, 0x31, 0x32, 0x23, 0x20, 0x25, 0x26, 0x2f, 0x2c, 0x29, 0x2a, 0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01,
|
|
0x02, 0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a };
|
|
|
|
/**
|
|
* Precalculated lookup table for galois field multiplication by 9 used in the
|
|
* MixColums step during decryption.
|
|
*/
|
|
private static final int[] MULT9 = { 0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c,
|
|
0x65, 0x7e, 0x77, 0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf, 0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 0xee,
|
|
0xe7, 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0xab,
|
|
0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94, 0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 0xd5, 0xdc, 0x76, 0x7f, 0x64,
|
|
0x6d, 0x52, 0x5b, 0x40, 0x49, 0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 0x08, 0x01, 0xe6, 0xef, 0xf4, 0xfd, 0xc2,
|
|
0xcb, 0xd0, 0xd9, 0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 0x98, 0x91, 0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b,
|
|
0x72, 0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 0x33, 0x3a, 0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2, 0x95,
|
|
0x9c, 0x87, 0x8e, 0xb1, 0xb8, 0xa3, 0xaa, 0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3, 0xa4, 0xad, 0xb6,
|
|
0xbf, 0x80, 0x89, 0x92, 0x9b, 0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43, 0x34, 0x3d, 0x26, 0x2f, 0x10,
|
|
0x19, 0x02, 0x0b, 0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8, 0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 0xa9,
|
|
0xa0, 0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78, 0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 0x39, 0x30, 0x9a,
|
|
0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5, 0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 0xe4, 0xed, 0x0a, 0x03, 0x18,
|
|
0x11, 0x2e, 0x27, 0x3c, 0x35, 0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 0x74, 0x7d, 0xa1, 0xa8, 0xb3, 0xba, 0x85,
|
|
0x8c, 0x97, 0x9e, 0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 0xdf, 0xd6, 0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07,
|
|
0x0e, 0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 0x4f, 0x46 };
|
|
|
|
/**
|
|
* Precalculated lookup table for galois field multiplication by 11 used in the
|
|
* MixColums step during decryption.
|
|
*/
|
|
private static final int[] MULT11 = { 0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31, 0x58, 0x53, 0x4e, 0x45, 0x74,
|
|
0x7f, 0x62, 0x69, 0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81, 0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 0xd2,
|
|
0xd9, 0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a, 0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 0x19, 0x12, 0xcb,
|
|
0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa, 0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 0xa9, 0xa2, 0xf6, 0xfd, 0xe0,
|
|
0xeb, 0xda, 0xd1, 0xcc, 0xc7, 0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 0x94, 0x9f, 0x46, 0x4d, 0x50, 0x5b, 0x6a,
|
|
0x61, 0x7c, 0x77, 0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 0x24, 0x2f, 0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7,
|
|
0xbc, 0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 0xef, 0xe4, 0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c, 0x65,
|
|
0x6e, 0x73, 0x78, 0x49, 0x42, 0x5f, 0x54, 0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6, 0xaf, 0xa4, 0xb9,
|
|
0xb2, 0x83, 0x88, 0x95, 0x9e, 0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76, 0x1f, 0x14, 0x09, 0x02, 0x33,
|
|
0x38, 0x25, 0x2e, 0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd, 0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 0xee,
|
|
0xe5, 0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d, 0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 0x5e, 0x55, 0x01,
|
|
0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30, 0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 0x63, 0x68, 0xb1, 0xba, 0xa7,
|
|
0xac, 0x9d, 0x96, 0x8b, 0x80, 0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 0xd3, 0xd8, 0x7a, 0x71, 0x6c, 0x67, 0x56,
|
|
0x5d, 0x40, 0x4b, 0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 0x18, 0x13, 0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0,
|
|
0xfb, 0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 0xa8, 0xa3 };
|
|
|
|
/**
|
|
* Precalculated lookup table for galois field multiplication by 13 used in the
|
|
* MixColums step during decryption.
|
|
*/
|
|
private static final int[] MULT13 = { 0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23, 0x68, 0x65, 0x72, 0x7f, 0x5c,
|
|
0x51, 0x46, 0x4b, 0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3, 0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 0x96,
|
|
0x9b, 0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98, 0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 0xfd, 0xf0, 0x6b,
|
|
0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48, 0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 0x2d, 0x20, 0x6d, 0x60, 0x77,
|
|
0x7a, 0x59, 0x54, 0x43, 0x4e, 0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 0x2b, 0x26, 0xbd, 0xb0, 0xa7, 0xaa, 0x89,
|
|
0x84, 0x93, 0x9e, 0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 0xfb, 0xf6, 0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8,
|
|
0xf5, 0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 0x90, 0x9d, 0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25, 0x6e,
|
|
0x63, 0x74, 0x79, 0x5a, 0x57, 0x40, 0x4d, 0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9, 0xb2, 0xbf, 0xa8,
|
|
0xa5, 0x86, 0x8b, 0x9c, 0x91, 0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29, 0x62, 0x6f, 0x78, 0x75, 0x56,
|
|
0x5b, 0x4c, 0x41, 0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42, 0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 0x27,
|
|
0x2a, 0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92, 0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 0xf7, 0xfa, 0xb7,
|
|
0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94, 0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 0xf1, 0xfc, 0x67, 0x6a, 0x7d,
|
|
0x70, 0x53, 0x5e, 0x49, 0x44, 0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 0x21, 0x2c, 0x0c, 0x01, 0x16, 0x1b, 0x38,
|
|
0x35, 0x22, 0x2f, 0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 0x4a, 0x47, 0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2,
|
|
0xff, 0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 0x9a, 0x97 };
|
|
|
|
/**
|
|
* Precalculated lookup table for galois field multiplication by 14 used in the
|
|
* MixColums step during decryption.
|
|
*/
|
|
private static final int[] MULT14 = { 0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a, 0x70, 0x7e, 0x6c, 0x62, 0x48,
|
|
0x46, 0x54, 0x5a, 0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca, 0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 0xb4,
|
|
0xba, 0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1, 0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 0x8f, 0x81, 0x3b,
|
|
0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11, 0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 0x6f, 0x61, 0xad, 0xa3, 0xb1,
|
|
0xbf, 0x95, 0x9b, 0x89, 0x87, 0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 0xf9, 0xf7, 0x4d, 0x43, 0x51, 0x5f, 0x75,
|
|
0x7b, 0x69, 0x67, 0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 0x19, 0x17, 0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52,
|
|
0x5c, 0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 0x22, 0x2c, 0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc, 0xe6,
|
|
0xe8, 0xfa, 0xf4, 0xde, 0xd0, 0xc2, 0xcc, 0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b, 0x31, 0x3f, 0x2d,
|
|
0x23, 0x09, 0x07, 0x15, 0x1b, 0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b, 0xd1, 0xdf, 0xcd, 0xc3, 0xe9,
|
|
0xe7, 0xf5, 0xfb, 0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0, 0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 0xce,
|
|
0xc0, 0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50, 0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 0x2e, 0x20, 0xec,
|
|
0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6, 0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 0xb8, 0xb6, 0x0c, 0x02, 0x10,
|
|
0x1e, 0x34, 0x3a, 0x28, 0x26, 0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 0x58, 0x56, 0x37, 0x39, 0x2b, 0x25, 0x0f,
|
|
0x01, 0x13, 0x1d, 0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 0x63, 0x6d, 0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3,
|
|
0xfd, 0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 0x83, 0x8d };
|
|
|
|
/**
|
|
* Subroutine of the Rijndael key expansion.
|
|
*
|
|
* @param t
|
|
* @param rconCounter
|
|
* @return
|
|
*/
|
|
public static BigInteger scheduleCore(BigInteger t, int rconCounter) {
|
|
String rBytes = t.toString(16);
|
|
|
|
// Add zero padding
|
|
int rBytesLength = rBytes.length();
|
|
while (rBytesLength < 8) {
|
|
rBytes = "0" + rBytes;
|
|
}
|
|
|
|
// rotate the first 16 bits to the back
|
|
String rotatingBytes = rBytes.substring(0, 2);
|
|
String fixedBytes = rBytes.substring(2);
|
|
|
|
rBytes = fixedBytes + rotatingBytes;
|
|
|
|
// apply S-Box to all 8-Bit Substrings
|
|
for (int i = 0; i < 4; i++) {
|
|
String currentByteBits = rBytes.substring(i * 2, (i + 1) * 2);
|
|
|
|
int currentByte = Integer.parseInt(currentByteBits, 16);
|
|
currentByte = SBOX[currentByte];
|
|
|
|
// add the current RCON value to the first byte
|
|
if (i == 0) {
|
|
currentByte = currentByte ^ RCON[rconCounter];
|
|
}
|
|
|
|
currentByteBits = Integer.toHexString(currentByte);
|
|
|
|
// Add zero padding
|
|
int currentByteBitsLength = currentByteBits.length();
|
|
while (currentByteBitsLength < 2) {
|
|
currentByteBits = '0' + currentByteBits;
|
|
}
|
|
|
|
// replace bytes in original string
|
|
rBytes = rBytes.substring(0, i * 2) + currentByteBits + rBytes.substring((i + 1) * 2);
|
|
}
|
|
|
|
// t = new BigInteger(rBytes, 16);
|
|
// return t;
|
|
return new BigInteger(rBytes, 16);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* Returns an array of 10 + 1 round keys that are calculated by using Rijndael
|
|
* key schedule
|
|
*
|
|
* @param initialKey
|
|
* @return array of 10 + 1 round keys
|
|
*/
|
|
public static BigInteger[] keyExpansion(BigInteger initialKey) {
|
|
BigInteger[] roundKeys = { initialKey, new BigInteger("0"), new BigInteger("0"), new BigInteger("0"),
|
|
new BigInteger("0"), new BigInteger("0"), new BigInteger("0"), new BigInteger("0"), new BigInteger("0"),
|
|
new BigInteger("0"), new BigInteger("0"), };
|
|
|
|
// initialize rcon iteration
|
|
int rconCounter = 1;
|
|
|
|
for (int i = 1; i < 11; i++) {
|
|
|
|
// get the previous 32 bits the key
|
|
BigInteger t = roundKeys[i - 1].remainder(new BigInteger("100000000", 16));
|
|
|
|
// split previous key into 8-bit segments
|
|
BigInteger[] prevKey = { roundKeys[i - 1].remainder(new BigInteger("100000000", 16)),
|
|
roundKeys[i - 1].remainder(new BigInteger("10000000000000000", 16))
|
|
.divide(new BigInteger("100000000", 16)),
|
|
roundKeys[i - 1].remainder(new BigInteger("1000000000000000000000000", 16))
|
|
.divide(new BigInteger("10000000000000000", 16)),
|
|
roundKeys[i - 1].divide(new BigInteger("1000000000000000000000000", 16)), };
|
|
|
|
// run schedule core
|
|
t = scheduleCore(t, rconCounter);
|
|
rconCounter += 1;
|
|
|
|
// Calculate partial round key
|
|
BigInteger t0 = t.xor(prevKey[3]);
|
|
BigInteger t1 = t0.xor(prevKey[2]);
|
|
BigInteger t2 = t1.xor(prevKey[1]);
|
|
BigInteger t3 = t2.xor(prevKey[0]);
|
|
|
|
// Join round key segments
|
|
t2 = t2.multiply(new BigInteger("100000000", 16));
|
|
t1 = t1.multiply(new BigInteger("10000000000000000", 16));
|
|
t0 = t0.multiply(new BigInteger("1000000000000000000000000", 16));
|
|
roundKeys[i] = t0.add(t1).add(t2).add(t3);
|
|
|
|
}
|
|
return roundKeys;
|
|
}
|
|
|
|
/**
|
|
* representation of the input 128-bit block as an array of 8-bit integers.
|
|
*
|
|
* @param block
|
|
* of 128-bit integers
|
|
* @return array of 8-bit integers
|
|
*/
|
|
public static int[] splitBlockIntoCells(BigInteger block) {
|
|
|
|
int[] cells = new int[16];
|
|
String blockBits = block.toString(2);
|
|
|
|
// Append leading 0 for full "128-bit" string
|
|
int blockBitsLength = blockBits.length();
|
|
while (blockBitsLength < 128) {
|
|
blockBits = '0' + blockBits;
|
|
}
|
|
|
|
// split 128 to 8 bit cells
|
|
for (int i = 0; i < cells.length; i++) {
|
|
String cellBits = blockBits.substring(8 * i, 8 * (i + 1));
|
|
cells[i] = Integer.parseInt(cellBits, 2);
|
|
}
|
|
|
|
return cells;
|
|
}
|
|
|
|
/**
|
|
* Returns the 128-bit BigInteger representation of the input of an array of
|
|
* 8-bit integers.
|
|
*
|
|
* @param cells
|
|
* that we need to merge
|
|
* @return block of merged cells
|
|
*/
|
|
public static BigInteger mergeCellsIntoBlock(int[] cells) {
|
|
|
|
String blockBits = "";
|
|
for (int i = 0; i < 16; i++) {
|
|
String cellBits = Integer.toBinaryString(cells[i]);
|
|
|
|
// Append leading 0 for full "8-bit" strings
|
|
int cellBitsLength = cellBits.length();
|
|
while (cellBitsLength < 8) {
|
|
cellBits = '0' + cellBits;
|
|
}
|
|
|
|
blockBits += cellBits;
|
|
}
|
|
|
|
return new BigInteger(blockBits, 2);
|
|
}
|
|
|
|
/**
|
|
*
|
|
* @param ciphertext
|
|
* @param key
|
|
* @return ciphertext XOR key
|
|
*/
|
|
public static BigInteger addRoundKey(BigInteger ciphertext, BigInteger key) {
|
|
return ciphertext.xor(key);
|
|
}
|
|
|
|
/**
|
|
* substitutes 8-Bit long substrings of the input using the S-Box and returns
|
|
* the result.
|
|
*
|
|
* @param ciphertext
|
|
* @return subtraction Output
|
|
*/
|
|
public static BigInteger subBytes(BigInteger ciphertext) {
|
|
|
|
int[] cells = splitBlockIntoCells(ciphertext);
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
cells[i] = SBOX[cells[i]];
|
|
}
|
|
|
|
return mergeCellsIntoBlock(cells);
|
|
}
|
|
|
|
/**
|
|
* substitutes 8-Bit long substrings of the input using the inverse S-Box for
|
|
* decryption and returns the result.
|
|
*
|
|
* @param ciphertext
|
|
* @return subtraction Output
|
|
*/
|
|
public static BigInteger subBytesDec(BigInteger ciphertext) {
|
|
|
|
int[] cells = splitBlockIntoCells(ciphertext);
|
|
|
|
for (int i = 0; i < 16; i++) {
|
|
cells[i] = INVERSE_SBOX[cells[i]];
|
|
}
|
|
|
|
return mergeCellsIntoBlock(cells);
|
|
}
|
|
|
|
/**
|
|
* Cell permutation step. Shifts cells within the rows of the input and returns
|
|
* the result.
|
|
*
|
|
* @param ciphertext
|
|
*/
|
|
public static BigInteger shiftRows(BigInteger ciphertext) {
|
|
int[] cells = splitBlockIntoCells(ciphertext);
|
|
int[] output = new int[16];
|
|
|
|
// do nothing in the first row
|
|
output[0] = cells[0];
|
|
output[4] = cells[4];
|
|
output[8] = cells[8];
|
|
output[12] = cells[12];
|
|
|
|
// shift the second row backwards by one cell
|
|
output[1] = cells[5];
|
|
output[5] = cells[9];
|
|
output[9] = cells[13];
|
|
output[13] = cells[1];
|
|
|
|
// shift the third row backwards by two cell
|
|
output[2] = cells[10];
|
|
output[6] = cells[14];
|
|
output[10] = cells[2];
|
|
output[14] = cells[6];
|
|
|
|
// shift the forth row backwards by tree cell
|
|
output[3] = cells[15];
|
|
output[7] = cells[3];
|
|
output[11] = cells[7];
|
|
output[15] = cells[11];
|
|
|
|
return mergeCellsIntoBlock(output);
|
|
}
|
|
|
|
/**
|
|
* Cell permutation step for decryption . Shifts cells within the rows of the
|
|
* input and returns the result.
|
|
*
|
|
* @param ciphertext
|
|
*/
|
|
public static BigInteger shiftRowsDec(BigInteger ciphertext) {
|
|
int[] cells = splitBlockIntoCells(ciphertext);
|
|
int[] output = new int[16];
|
|
|
|
// do nothing in the first row
|
|
output[0] = cells[0];
|
|
output[4] = cells[4];
|
|
output[8] = cells[8];
|
|
output[12] = cells[12];
|
|
|
|
// shift the second row forwards by one cell
|
|
output[1] = cells[13];
|
|
output[5] = cells[1];
|
|
output[9] = cells[5];
|
|
output[13] = cells[9];
|
|
|
|
// shift the third row forwards by two cell
|
|
output[2] = cells[10];
|
|
output[6] = cells[14];
|
|
output[10] = cells[2];
|
|
output[14] = cells[6];
|
|
|
|
// shift the forth row forwards by tree cell
|
|
output[3] = cells[7];
|
|
output[7] = cells[11];
|
|
output[11] = cells[15];
|
|
output[15] = cells[3];
|
|
|
|
return mergeCellsIntoBlock(output);
|
|
}
|
|
|
|
/**
|
|
* Applies the Rijndael MixColumns to the input and returns the result.
|
|
*
|
|
* @param ciphertext
|
|
*/
|
|
public static BigInteger mixColumns(BigInteger ciphertext) {
|
|
|
|
int[] cells = splitBlockIntoCells(ciphertext);
|
|
int[] outputCells = new int[16];
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
int[] row = { cells[i * 4], cells[i * 4 + 1], cells[i * 4 + 2], cells[i * 4 + 3] };
|
|
|
|
outputCells[i * 4] = MULT2[row[0]] ^ MULT3[row[1]] ^ row[2] ^ row[3];
|
|
outputCells[i * 4 + 1] = row[0] ^ MULT2[row[1]] ^ MULT3[row[2]] ^ row[3];
|
|
outputCells[i * 4 + 2] = row[0] ^ row[1] ^ MULT2[row[2]] ^ MULT3[row[3]];
|
|
outputCells[i * 4 + 3] = MULT3[row[0]] ^ row[1] ^ row[2] ^ MULT2[row[3]];
|
|
}
|
|
return mergeCellsIntoBlock(outputCells);
|
|
}
|
|
|
|
/**
|
|
* Applies the inverse Rijndael MixColumns for decryption to the input and
|
|
* returns the result.
|
|
*
|
|
* @param ciphertext
|
|
*/
|
|
public static BigInteger mixColumnsDec(BigInteger ciphertext) {
|
|
|
|
int[] cells = splitBlockIntoCells(ciphertext);
|
|
int[] outputCells = new int[16];
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
int[] row = { cells[i * 4], cells[i * 4 + 1], cells[i * 4 + 2], cells[i * 4 + 3] };
|
|
|
|
outputCells[i * 4] = MULT14[row[0]] ^ MULT11[row[1]] ^ MULT13[row[2]] ^ MULT9[row[3]];
|
|
outputCells[i * 4 + 1] = MULT9[row[0]] ^ MULT14[row[1]] ^ MULT11[row[2]] ^ MULT13[row[3]];
|
|
outputCells[i * 4 + 2] = MULT13[row[0]] ^ MULT9[row[1]] ^ MULT14[row[2]] ^ MULT11[row[3]];
|
|
outputCells[i * 4 + 3] = MULT11[row[0]] ^ MULT13[row[1]] ^ MULT9[row[2]] ^ MULT14[row[3]];
|
|
}
|
|
return mergeCellsIntoBlock(outputCells);
|
|
}
|
|
|
|
/**
|
|
* Encrypts the plaintext with the key and returns the result
|
|
*
|
|
* @param plainText
|
|
* which we want to encrypt
|
|
* @param key
|
|
* the key for encrypt
|
|
* @return EncryptedText
|
|
*/
|
|
public static BigInteger encrypt(BigInteger plainText, BigInteger key) {
|
|
BigInteger[] roundKeys = keyExpansion(key);
|
|
|
|
// Initial round
|
|
plainText = addRoundKey(plainText, roundKeys[0]);
|
|
|
|
// Main rounds
|
|
for (int i = 1; i < 10; i++) {
|
|
plainText = subBytes(plainText);
|
|
plainText = shiftRows(plainText);
|
|
plainText = mixColumns(plainText);
|
|
plainText = addRoundKey(plainText, roundKeys[i]);
|
|
}
|
|
|
|
// Final round
|
|
plainText = subBytes(plainText);
|
|
plainText = shiftRows(plainText);
|
|
plainText = addRoundKey(plainText, roundKeys[10]);
|
|
|
|
return plainText;
|
|
}
|
|
|
|
/**
|
|
* Decrypts the ciphertext with the key and returns the result
|
|
*
|
|
* @param cipherText
|
|
* The Encrypted text which we want to decrypt
|
|
* @param key
|
|
* @return decryptedText
|
|
*/
|
|
public static BigInteger decrypt(BigInteger cipherText, BigInteger key) {
|
|
|
|
BigInteger[] roundKeys = keyExpansion(key);
|
|
|
|
// Invert final round
|
|
cipherText = addRoundKey(cipherText, roundKeys[10]);
|
|
cipherText = shiftRowsDec(cipherText);
|
|
cipherText = subBytesDec(cipherText);
|
|
|
|
// Invert main rounds
|
|
for (int i = 9; i > 0; i--) {
|
|
cipherText = addRoundKey(cipherText, roundKeys[i]);
|
|
cipherText = mixColumnsDec(cipherText);
|
|
cipherText = shiftRowsDec(cipherText);
|
|
cipherText = subBytesDec(cipherText);
|
|
}
|
|
|
|
// Invert initial round
|
|
cipherText = addRoundKey(cipherText, roundKeys[0]);
|
|
|
|
return cipherText;
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
|
|
try (Scanner input = new Scanner(System.in)) {
|
|
System.out.println("Enter (e) letter for encrpyt or (d) letter for decrypt :");
|
|
char choice = input.nextLine().charAt(0);
|
|
String in;
|
|
switch (choice) {
|
|
case 'E':
|
|
case 'e':
|
|
System.out.println("Choose a plaintext block (128-Bit Integer in base 16):");
|
|
in = input.nextLine();
|
|
BigInteger plaintext = new BigInteger(in, 16);
|
|
System.out.println("Choose a Key (128-Bit Integer in base 16):");
|
|
in = input.nextLine();
|
|
BigInteger encryptionKey = new BigInteger(in, 16);
|
|
System.out.println("The encrypted message is: \n" + encrypt(plaintext, encryptionKey).toString(16));
|
|
break;
|
|
case 'D':
|
|
case 'd':
|
|
System.out.println("Enter your ciphertext block (128-Bit Integer in base 16):");
|
|
in = input.nextLine();
|
|
BigInteger ciphertext = new BigInteger(in, 16);
|
|
System.out.println("Choose a Key (128-Bit Integer in base 16):");
|
|
in = input.nextLine();
|
|
BigInteger decryptionKey = new BigInteger(in, 16);
|
|
System.out.println("The deciphered message is:\n" + decrypt(ciphertext, decryptionKey).toString(16));
|
|
break;
|
|
default:
|
|
System.out.println("** End **");
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|