59 lines
2.0 KiB
Java
59 lines
2.0 KiB
Java
package com.maths;
|
|
|
|
import java.util.ArrayList;
|
|
|
|
/**
|
|
* Class for circular convolution of two discrete signals using the convolution theorem.
|
|
*
|
|
* @author Ioannis Karavitsis
|
|
* @version 1.0
|
|
* */
|
|
public class CircularConvolutionFFT
|
|
{
|
|
/**
|
|
* This method pads the signal with zeros until it reaches the new size.
|
|
*
|
|
* @param x The signal to be padded.
|
|
* @param newSize The new size of the signal.
|
|
* */
|
|
private static void padding(ArrayList<FFT.Complex> x, int newSize)
|
|
{
|
|
if(x.size() < newSize)
|
|
{
|
|
int diff = newSize - x.size();
|
|
for(int i = 0; i < diff; i++)
|
|
x.add(new FFT.Complex());
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Discrete circular convolution function. It uses the convolution theorem for discrete signals: convolved = IDFT(DFT(a)*DFT(b)).
|
|
* Then we use the FFT algorithm for faster calculations of the two DFTs and the final IDFT.
|
|
*
|
|
* More info:
|
|
* https://en.wikipedia.org/wiki/Convolution_theorem
|
|
*
|
|
* @param a The first signal.
|
|
* @param b The other signal.
|
|
* @return The convolved signal.
|
|
* */
|
|
public static ArrayList<FFT.Complex> fftCircularConvolution(ArrayList<FFT.Complex> a, ArrayList<FFT.Complex> b)
|
|
{
|
|
int convolvedSize = Math.max(a.size(), b.size()); //The two signals must have the same size equal to the bigger one
|
|
padding(a, convolvedSize); //Zero padding the smaller signal
|
|
padding(b, convolvedSize);
|
|
|
|
/* Find the FFTs of both signal. Here we use the Bluestein algorithm because we want the FFT to have the same length with the signal and not bigger */
|
|
FFTBluestein.fftBluestein(a, false);
|
|
FFTBluestein.fftBluestein(b, false);
|
|
ArrayList<FFT.Complex> convolved = new ArrayList<>();
|
|
|
|
for(int i = 0; i < a.size(); i++)
|
|
convolved.add(a.get(i).multiply(b.get(i))); //FFT(a)*FFT(b)
|
|
|
|
FFTBluestein.fftBluestein(convolved, true); //IFFT
|
|
|
|
return convolved;
|
|
}
|
|
}
|