JavaAlgorithms/Others/Huffman.java
DESKTOP-0VAEMFL\joaom 20d0bb2c69 Merge branch 'master' of https://github.com/freitzzz/Java
# Conflicts:
#	Data Structures/HashMap/HashMap.java
#	Huffman.java
#	Misc/FloydTriangle.java
#	Misc/Huffman.java
#	Misc/InsertDeleteInArray.java
#	Misc/RootPrecision.java
#	Misc/ft.java
#	Misc/root_precision.java
#	Others/FloydTriangle.java
#	Others/Huffman.java
#	Others/insert_delete_in_array.java
#	Others/root_precision.java
#	insert_delete_in_array.java
2017-10-28 12:59:58 +01:00

159 lines
4.9 KiB
Java

import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;
/**
*
* @author Mayank Kumar (mk9440)
*/
/*
Output :
Enter number of distinct letters
6
Enter letters with its frequncy to encode
Enter letter : a
Enter frequncy : 45
Enter letter : b
Enter frequncy : 13
Enter letter : c
Enter frequncy : 12
Enter letter : d
Enter frequncy : 16
Enter letter : e
Enter frequncy : 9
Enter letter : f
Enter frequncy : 5
Letter Encoded Form
a 0
b 1 0 1
c 1 0 0
d 1 1 1
e 1 1 0 1
f 1 1 0 0
*/
class Node{
String letr="";
int freq=0,data=0;
Node left=null,right=null;
}
//A comparator class to sort list on the basis of their frequency
class comp implements Comparator<Node>{
@Override
public int compare(Node o1, Node o2) {
if(o1.freq>o2.freq){return 1;}
else if(o1.freq<o2.freq){return -1;}
else{return 0;}
}
}
public class Huffman {
// A simple function to print a given list
//I just made it for debugging
public static void print_list(List li){
Iterator<Node> it=li.iterator();
while(it.hasNext()){Node n=it.next();System.out.print(n.freq+" ");}System.out.println();
}
//Function for making tree (Huffman Tree)
public static Node make_huffmann_tree(List li){
//Sorting list in increasing order of its letter frequency
li.sort(new comp());
Node temp=null;
Iterator it=li.iterator();
//System.out.println(li.size());
//Loop for making huffman tree till only single node remains in list
while(true){
temp=new Node();
//a and b are Node which are to be combine to make its parent
Node a=new Node(),b=new Node();
a=null;b=null;
//checking if list is eligible for combining or not
//here first assignment of it.next in a will always be true as list till end will
//must have atleast one node
a=(Node)it.next();
//Below condition is to check either list has 2nd node or not to combine
//If this condition will be false, then it means construction of huffman tree is completed
if(it.hasNext()){b=(Node)it.next();}
//Combining first two smallest nodes in list to make its parent whose frequncy
//will be equals to sum of frequency of these two nodes
if(b!=null){
temp.freq=a.freq+b.freq;a.data=0;b.data=1;//assigining 0 and 1 to left and right nodes
temp.left=a;temp.right=b;
//after combing, removing first two nodes in list which are already combined
li.remove(0);//removes first element which is now combined -step1
li.remove(0);//removes 2nd element which comes on 1st position after deleting first in step1
li.add(temp);//adding new combined node to list
//print_list(li); //For visualizing each combination step
}
//Sorting after combining to again repeat above on sorted frequency list
li.sort(new comp());
it=li.iterator();//resetting list pointer to first node (head/root of tree)
if(li.size()==1){return (Node)it.next();} //base condition ,returning root of huffman tree
}
}
//Function for finding path between root and given letter ch
public static void dfs(Node n,String ch){
Stack<Node> st=new Stack(); // stack for storing path
int freq=n.freq; // recording root freq to avoid it adding in path encoding
find_path_and_encode(st,n,ch,freq);
}
//A simple utility function to print stack (Used for printing path)
public static void print_path(Stack<Node> st){
for(int i=0;i<st.size();i++){
System.out.print(st.elementAt(i).data+" ");
}
}
public static void find_path_and_encode(Stack<Node> st,Node root,String s,int f){
//Base condition
if(root!= null){
if(root.freq!=f){st.push(root);} // avoiding root to add in path/encoding bits
if(root.letr.equals(s)){print_path(st);return;} // Recursion stopping condition when path gets founded
find_path_and_encode(st,root.left,s,f);
find_path_and_encode(st,root.right,s,f);
//Popping if path not found in right or left of this node,because we previously
//pushed this node in taking a mindset that it might be in path
st.pop();
}
}
public static void main(String args[]){
List <Node> li=new LinkedList<>();
Scanner in=new Scanner(System.in);
System.out.println("Enter number of distinct letters ");
int n=in.nextInt();
String s[]=new String[n];
System.out.print("Enter letters with its frequncy to encode\n");
for(int i=0;i<n;i++){
Node a=new Node();
System.out.print("Enter letter : ");
a.letr=in.next();s[i]=a.letr;
System.out.print("Enter frequncy : ");
a.freq=in.nextInt();System.out.println();
li.add(a);
}
Node root=new Node();
root=make_huffmann_tree(li);
System.out.println("Letter\t\tEncoded Form");
for(int i=0;i<n;i++){
System.out.print(s[i]+"\t\t");dfs(root,s[i]);System.out.println();}
}
}