61 lines
1.6 KiB
Java
61 lines
1.6 KiB
Java
package DynamicProgramming;
|
|
|
|
// Java program to find length of the shortest supersequence
|
|
class ShortestSuperSequence {
|
|
|
|
// Function to find length of the
|
|
// shortest supersequence of X and Y.
|
|
static int shortestSuperSequence(String X, String Y)
|
|
{
|
|
int m = X.length();
|
|
int n = Y.length();
|
|
|
|
// find lcs
|
|
int l = lcs(X, Y, m, n);
|
|
|
|
// Result is sum of input string
|
|
// lengths - length of lcs
|
|
return (m + n - l);
|
|
}
|
|
|
|
// Returns length of LCS
|
|
// for X[0..m - 1], Y[0..n - 1]
|
|
static int lcs(String X, String Y, int m, int n)
|
|
{
|
|
int[][] L = new int[m + 1][n + 1];
|
|
int i, j;
|
|
|
|
// Following steps build L[m + 1][n + 1]
|
|
// in bottom up fashion. Note that
|
|
// L[i][j] contains length of LCS
|
|
// of X[0..i - 1]and Y[0..j - 1]
|
|
for (i = 0; i <= m; i++) {
|
|
for (j = 0; j <= n; j++) {
|
|
if (i == 0 || j == 0)
|
|
L[i][j] = 0;
|
|
|
|
else if (X.charAt(i - 1) == Y.charAt(j - 1))
|
|
L[i][j] = L[i - 1][j - 1] + 1;
|
|
|
|
else
|
|
L[i][j] = Math.max(L[i - 1][j],
|
|
L[i][j - 1]);
|
|
}
|
|
}
|
|
|
|
// L[m][n] contains length of LCS
|
|
// for X[0..n - 1] and Y[0..m - 1]
|
|
return L[m][n];
|
|
}
|
|
|
|
// Driver code
|
|
public static void main(String args[])
|
|
{
|
|
String X = "AGGTAB";
|
|
String Y = "GXTXAYB";
|
|
|
|
System.out.println("Length of the shortest "
|
|
+ "supersequence is "
|
|
+ shortestSuperSequence(X, Y));
|
|
}
|
|
} |