JavaAlgorithms/DataStructures/Trees/BinaryTree.java
2020-01-26 14:15:18 +08:00

283 lines
7.9 KiB
Java

package DataStructures.Trees;
/**
* This entire class is used to build a Binary Tree data structure.
* There is the Node Class and the Tree Class, both explained below.
*/
/**
* A binary tree is a data structure in which an element
* has two successors(children). The left child is usually
* smaller than the parent, and the right child is usually
* bigger.
*
* @author Unknown
*
*/
public class BinaryTree {
/**
* This class implements the nodes that will go on the Binary Tree.
* They consist of the data in them, the node to the left, the node
* to the right, and the parent from which they came from.
*
* @author Unknown
*
*/
class Node {
/** Data for the node */
public int data;
/** The Node to the left of this one */
public Node left;
/** The Node to the right of this one */
public Node right;
/** The parent of this node */
public Node parent;
/**
* Constructor of Node
*
* @param value Value to put in the node
*/
public Node(int value) {
data = value;
left = null;
right = null;
parent = null;
}
}
/** The root of the Binary Tree */
private Node root;
/**
* Constructor
*/
public BinaryTree() {
root = null;
}
/**
* Method to find a Node with a certain value
*
* @param key Value being looked for
* @return The node if it finds it, otherwise returns the parent
*/
public Node find(int key) {
Node current = root;
while (current != null) {
if (key < current.data) {
if (current.left == null)
return current; //The key isn't exist, returns the parent
current = current.left;
} else if (key > current.data) {
if (current.right == null)
return current;
current = current.right;
} else { // If you find the value return it
return current;
}
}
return null;
}
/**
* Inserts certain value into the Binary Tree
*
* @param value Value to be inserted
*/
public void put(int value) {
Node newNode = new Node(value);
if (root == null)
root = newNode;
else {
//This will return the soon to be parent of the value you're inserting
Node parent = find(value);
//This if/else assigns the new node to be either the left or right child of the parent
if (value < parent.data) {
parent.left = newNode;
parent.left.parent = parent;
return;
} else {
parent.right = newNode;
parent.right.parent = parent;
return;
}
}
}
/**
* Deletes a given value from the Binary Tree
*
* @param value Value to be deleted
* @return If the value was deleted
*/
public boolean remove(int value) {
//temp is the node to be deleted
Node temp = find(value);
//If the value doesn't exist
if (temp.data != value)
return false;
//No children
if (temp.right == null && temp.left == null) {
if (temp == root)
root = null;
//This if/else assigns the new node to be either the left or right child of the parent
else if (temp.parent.data < temp.data)
temp.parent.right = null;
else
temp.parent.left = null;
return true;
}
//Two children
else if (temp.left != null && temp.right != null) {
Node successor = findSuccessor(temp);
//The left tree of temp is made the left tree of the successor
successor.left = temp.left;
successor.left.parent = successor;
//If the successor has a right child, the child's grandparent is it's new parent
if(successor.parent!=temp){
if(successor.right!=null){
successor.right.parent = successor.parent;
successor.parent.left = successor.right;
successor.right = temp.right;
successor.right.parent = successor;
}else{
successor.parent.left=null;
successor.right=temp.right;
successor.right.parent=successor;
}
}
if (temp == root) {
successor.parent = null;
root = successor;
return true;
}
//If you're not deleting the root
else {
successor.parent = temp.parent;
//This if/else assigns the new node to be either the left or right child of the parent
if (temp.parent.data < temp.data)
temp.parent.right = successor;
else
temp.parent.left = successor;
return true;
}
}
//One child
else {
//If it has a right child
if (temp.right != null) {
if (temp == root) {
root = temp.right;
return true;
}
temp.right.parent = temp.parent;
//Assigns temp to left or right child
if (temp.data < temp.parent.data)
temp.parent.left = temp.right;
else
temp.parent.right = temp.right;
return true;
}
//If it has a left child
else {
if (temp == root) {
root = temp.left;
return true;
}
temp.left.parent = temp.parent;
//Assigns temp to left or right side
if (temp.data < temp.parent.data)
temp.parent.left = temp.left;
else
temp.parent.right = temp.left;
return true;
}
}
}
/**
* This method finds the Successor to the Node given.
* Move right once and go left down the tree as far as you can
*
* @param n Node that you want to find the Successor of
* @return The Successor of the node
*/
public Node findSuccessor(Node n) {
if (n.right == null)
return n;
Node current = n.right;
Node parent = n.right;
while (current != null) {
parent = current;
current = current.left;
}
return parent;
}
/**
* Returns the root of the Binary Tree
*
* @return the root of the Binary Tree
*/
public Node getRoot() {
return root;
}
/**
* Prints leftChild - root - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void inOrder(Node localRoot) {
if (localRoot != null) {
inOrder(localRoot.left);
System.out.print(localRoot.data + " ");
inOrder(localRoot.right);
}
}
/**
* Prints root - leftChild - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void preOrder(Node localRoot) {
if (localRoot != null) {
System.out.print(localRoot.data + " ");
preOrder(localRoot.left);
preOrder(localRoot.right);
}
}
/**
* Prints rightChild - leftChild - root
*
* @param localRoot The local root of the binary tree
*/
public void postOrder(Node localRoot) {
if (localRoot != null) {
postOrder(localRoot.left);
postOrder(localRoot.right);
System.out.print(localRoot.data + " ");
}
}
}