160 lines
6.6 KiB
Java
160 lines
6.6 KiB
Java
/*
|
|
Time Complexity = O(E), where E is equal to the number of edges
|
|
*/
|
|
|
|
package A_Star;
|
|
|
|
import java.util.*;
|
|
|
|
public class A_Star {
|
|
|
|
private static class Graph {
|
|
//Graph's structure can be changed only applying changes to this class.
|
|
private ArrayList<Edge> [] graph;
|
|
|
|
//Initialise ArrayLists in Constructor
|
|
public Graph(int size) {
|
|
this.graph = new ArrayList[size];
|
|
for (int i = 0; i < size; i++) {
|
|
this.graph[i] = new ArrayList<>();
|
|
}
|
|
}
|
|
|
|
private ArrayList<Edge> getNeighbours(int from) { return this.graph[from]; }
|
|
|
|
//Graph is bidirectional, for just one direction remove second instruction of this method.
|
|
private void addEdge (Edge edge) {
|
|
this.graph[edge.getFrom()].add(new Edge(edge.getFrom(), edge.getTo(), edge.getWeight()));
|
|
this.graph[edge.getTo()].add(new Edge(edge.getTo(), edge.getFrom(), edge.getWeight()));
|
|
}
|
|
}
|
|
|
|
private static class Edge {
|
|
private int from;
|
|
private int to;
|
|
private int weight;
|
|
|
|
public Edge(int from, int to, int weight) {
|
|
this.from = from;
|
|
this.to = to;
|
|
this.weight = weight;
|
|
}
|
|
|
|
public int getFrom() { return from; }
|
|
|
|
public int getTo() { return to; }
|
|
|
|
public int getWeight() { return weight; }
|
|
}
|
|
|
|
//class to iterate during the algorithm execution, and also used to return the solution.
|
|
private static class PathAndDistance {
|
|
private int distance; //distance advanced so far.
|
|
private ArrayList<Integer> path; //list of visited nodes in this path.
|
|
private int estimated; //heuristic value associated to the last node od the path (current node).
|
|
|
|
public PathAndDistance(int distance, ArrayList<Integer> path, int estimated) {
|
|
this.distance = distance;
|
|
this.path = path;
|
|
this.estimated = estimated;
|
|
}
|
|
|
|
public int getDistance() { return distance; }
|
|
|
|
public ArrayList<Integer> getPath() { return path; }
|
|
|
|
public int getEstimated() { return estimated; }
|
|
|
|
private void printSolution () {
|
|
if (this.path != null)
|
|
System.out.println("Optimal path: " + this.path.toString() +
|
|
", distance: " + this.distance);
|
|
else
|
|
System.out.println("There is no path available to connect the points");
|
|
}
|
|
}
|
|
|
|
private static void initializeGraph(Graph graph, ArrayList<Integer> data) {
|
|
for (int i = 0; i < data.size(); i+=4) {
|
|
graph.addEdge(new Edge(data.get(i), data.get(i + 1), data.get(i + 2)));
|
|
}
|
|
/*
|
|
.x. node
|
|
(y) cost
|
|
- or | or / bidirectional connection
|
|
|
|
( 98)- .7. -(86)- .4.
|
|
|
|
|
( 85)- .17. -(142)- .18. -(92)- .8. -(87)- .11.
|
|
|
|
|
. 1. -------------------- (160)
|
|
| \ |
|
|
(211) \ .6.
|
|
| \ |
|
|
. 5. (101)-.13. -(138) (115)
|
|
| | | /
|
|
( 99) ( 97) | /
|
|
| | | /
|
|
.12. -(151)- .15. -(80)- .14. | /
|
|
| | | | /
|
|
( 71) (140) (146)- .2. -(120)
|
|
| | |
|
|
.19. -( 75)- . 0. .10. -(75)- .3.
|
|
| |
|
|
(118) ( 70)
|
|
| |
|
|
.16. -(111)- .9.
|
|
*/
|
|
}
|
|
|
|
public static void main(String[] args) {
|
|
//heuristic function optimistic values
|
|
int[] heuristic = {366, 0, 160, 242, 161, 178, 77, 151, 226,
|
|
244, 241, 234, 380, 98, 193, 253, 329, 80, 199, 374};
|
|
|
|
Graph graph = new Graph(20);
|
|
ArrayList<Integer> graphData = new ArrayList<>(Arrays.asList(0, 19, 75, null,
|
|
0, 15, 140, null, 0, 16, 118, null, 19, 12, 71, null, 12, 15, 151, null,
|
|
16, 9, 111, null, 9, 10, 70, null, 10, 3, 75, null, 3, 2, 120, null,
|
|
2, 14, 146, null, 2, 13, 138, null, 2, 6, 115, null, 15, 14, 80, null,
|
|
15, 5, 99, null, 14, 13, 97, null, 5, 1, 211, null, 13, 1, 101, null,
|
|
6, 1, 160, null, 1, 17, 85, null, 17, 7, 98, null, 7, 4, 86, null,
|
|
17, 18, 142, null, 18, 8, 92, null, 8, 11, 87));
|
|
initializeGraph(graph, graphData);
|
|
|
|
PathAndDistance solution = aStar(3, 1, graph, heuristic);
|
|
solution.printSolution();
|
|
|
|
}
|
|
|
|
public static PathAndDistance aStar(int from, int to, Graph graph, int[] heuristic) {
|
|
//nodes are prioritised by the less value of the current distance of their paths, and the estimated value
|
|
//given by the heuristic function to reach the destination point from the current point.
|
|
PriorityQueue<PathAndDistance> queue = new PriorityQueue<>
|
|
(Comparator.comparingInt(a -> (a.getDistance() + a.getEstimated())));
|
|
|
|
//dummy data to start the algorithm from the beginning point
|
|
queue.add(new PathAndDistance(0, new ArrayList<>(Arrays.asList(from)), 0));
|
|
|
|
boolean solutionFound = false;
|
|
PathAndDistance currentData = new PathAndDistance(-1, null, -1);
|
|
while (!queue.isEmpty() && !solutionFound) {
|
|
currentData = queue.poll(); //first in the queue, best node so keep exploring.
|
|
int currentPosition = currentData.getPath().get(currentData.getPath().size() - 1); //current node.
|
|
if (currentPosition == to)
|
|
solutionFound = true;
|
|
else
|
|
for (Edge edge : graph.getNeighbours(currentPosition))
|
|
if (!currentData.getPath().contains(edge.getTo())) { //Avoid Cycles
|
|
ArrayList<Integer> updatedPath = new ArrayList<>(currentData.getPath());
|
|
updatedPath.add(edge.getTo()); //Add the new node to the path, update the distance,
|
|
// and the heuristic function value associated to that path.
|
|
queue.add(new PathAndDistance(currentData.getDistance() + edge.getWeight(),
|
|
updatedPath, heuristic[edge.getTo()]));
|
|
}
|
|
}
|
|
return (solutionFound) ? currentData : new PathAndDistance(-1, null, -1);
|
|
//Out of while loop, if there is a solution, the current Data stores the optimal path, and its distance
|
|
}
|
|
}
|