JavaAlgorithms/Others/Dijkshtra.java
2020-01-28 18:34:52 +02:00

85 lines
2.5 KiB
Java

package Others;
import java.util.Arrays;
import java.util.Scanner;
import java.util.Stack;
/**
* @author Mayank K Jha
*/
public class Dijkshtra {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
// n = Number of nodes or vertices
int n = in.nextInt();
// m = Number of Edges
int m = in.nextInt();
// Adjacency Matrix
long[][] w = new long[n + 1][n + 1];
// Initializing Matrix with Certain Maximum Value for path b/w any two vertices
for (long[] row : w) {
Arrays.fill(row, 1000000L);
}
/* From above,we Have assumed that,initially path b/w any two Pair of vertices is Infinite such that Infinite = 1000000l
For simplicity , We can also take path Value = Long.MAX_VALUE , but i have taken Max Value = 1000000l */
// Taking Input as Edge Location b/w a pair of vertices
for (int i = 0; i < m; i++) {
int x = in.nextInt(), y = in.nextInt();
long cmp = in.nextLong();
// Comparing previous edge value with current value - Cycle Case
if (w[x][y] > cmp) {
w[x][y] = cmp;
w[y][x] = cmp;
}
}
// Implementing Dijkshtra's Algorithm
Stack<Integer> t = new Stack<>();
int src = in.nextInt();
for (int i = 1; i <= n; i++) {
if (i != src) {
t.push(i);
}
}
Stack<Integer> p = new Stack<>();
p.push(src);
w[src][src] = 0;
while (!t.isEmpty()) {
int min = 989997979;
int loc = -1;
for (int i = 0; i < t.size(); i++) {
w[src][t.elementAt(i)] = Math.min(w[src][t.elementAt(i)], w[src][p.peek()] + w[p.peek()][t.elementAt(i)]);
if (w[src][t.elementAt(i)] <= min) {
min = (int) w[src][t.elementAt(i)];
loc = i;
}
}
p.push(t.elementAt(loc));
t.removeElementAt(loc);
}
// Printing shortest path from the given source src
for (int i = 1; i <= n; i++) {
if (i != src && w[src][i] != 1000000L) {
System.out.print(w[src][i] + " ");
}
// Printing -1 if there is no path b/w given pair of edges
else if (i != src) {
System.out.print("-1" + " ");
}
}
in.close();
}
}