455876723b
Very frequently asked DP problem
39 lines
783 B
Java
39 lines
783 B
Java
// A Dynamic Programming based solution for 0-1 Knapsack problem
|
|
|
|
public class Knapsack
|
|
{
|
|
|
|
private static int knapSack(int W, int wt[], int val[], int n)
|
|
{
|
|
int i, w;
|
|
int rv[][] = new int[n+1][W+1]; //rv means return value
|
|
|
|
// Build table rv[][] in bottom up manner
|
|
for (i = 0; i <= n; i++)
|
|
{
|
|
for (w = 0; w <= W; w++)
|
|
{
|
|
if (i==0 || w==0)
|
|
rv[i][w] = 0;
|
|
else if (wt[i-1] <= w)
|
|
rv[i][w] = Math.max(val[i-1] + rv[i-1][w-wt[i-1]], rv[i-1][w]);
|
|
else
|
|
rv[i][w] = rv[i-1][w];
|
|
}
|
|
}
|
|
|
|
return rv[n][W];
|
|
}
|
|
|
|
|
|
// Driver program to test above function
|
|
public static void main(String args[])
|
|
{
|
|
int val[] = new int[]{50, 100, 130};
|
|
int wt[] = new int[]{10, 20, 40};
|
|
int W = 50;
|
|
int n = val.length;
|
|
System.out.println(knapSack(W, wt, val, n));
|
|
}
|
|
}
|