64513ff53e
Co-authored-by: Amit Kumar <akumar@indeed.com>
46 lines
1.3 KiB
Java
46 lines
1.3 KiB
Java
package DataStructures.Trees;
|
|
|
|
import DataStructures.Trees.BinaryTree.Node;
|
|
|
|
/**
|
|
* Given a sorted array. Create a balanced binary search tree from it.
|
|
*
|
|
* Steps:
|
|
* 1. Find the middle element of array. This will act as root
|
|
* 2. Use the left half recursively to create left subtree
|
|
* 3. Use the right half recursively to create right subtree
|
|
*/
|
|
public class CreateBSTFromSortedArray {
|
|
|
|
public static void main(String[] args) {
|
|
test(new int[]{});
|
|
test(new int[]{1, 2, 3});
|
|
test(new int[]{1, 2, 3, 4, 5});
|
|
test(new int[]{1, 2, 3, 4, 5, 6, 7});
|
|
}
|
|
|
|
private static void test(int[] array) {
|
|
BinaryTree root = new BinaryTree(createBst(array, 0, array.length - 1));
|
|
System.out.println("\n\nPreorder Traversal: ");
|
|
root.preOrder(root.getRoot());
|
|
System.out.println("\nInorder Traversal: ");
|
|
root.inOrder(root.getRoot());
|
|
System.out.println("\nPostOrder Traversal: ");
|
|
root.postOrder(root.getRoot());
|
|
}
|
|
|
|
private static Node createBst(int[] array, int start, int end) {
|
|
// No element left.
|
|
if (start > end) {
|
|
return null;
|
|
}
|
|
int mid = start + (end - start) / 2;
|
|
|
|
// middle element will be the root
|
|
Node root = new Node(array[mid]);
|
|
root.left = createBst(array, start, mid - 1);
|
|
root.right = createBst(array, mid + 1, end);
|
|
return root;
|
|
}
|
|
}
|