b02a3fc818
Co-authored-by: Amit Kumar <akumar@indeed.com>
96 lines
3.8 KiB
Java
96 lines
3.8 KiB
Java
package DataStructures.Trees;
|
|
|
|
import java.util.HashMap;
|
|
import java.util.Map;
|
|
import DataStructures.Trees.BinaryTree.Node;
|
|
|
|
/**
|
|
* Approach: Naive Solution: Create root node from first value present in
|
|
* preorder traversal. Look for the index of root node's value in inorder
|
|
* traversal. That will tell total nodes present in left subtree and right
|
|
* subtree. Based on that index create left and right subtree.
|
|
* Complexity:
|
|
* Time: O(n^2) for each node there is iteration to find index in inorder array
|
|
* Space: Stack size = O(height) = O(lg(n))
|
|
*
|
|
* Optimized Solution: Instead of iterating over inorder array to find index of
|
|
* root value, create a hashmap and find out the index of root value.
|
|
* Complexity:
|
|
* Time: O(n) hashmap reduced iteration to find index in inorder array
|
|
* Space: O(n) space taken by hashmap
|
|
*
|
|
*/
|
|
public class CreateBinaryTreeFromInorderPreorder {
|
|
public static void main(String[] args) {
|
|
test(new Integer[] {}, new Integer[] {}); // empty tree
|
|
test(new Integer[] { 1 }, new Integer[] { 1 }); // single node tree
|
|
test(new Integer[] { 1, 2, 3, 4 }, new Integer[] { 1, 2, 3, 4 }); // right skewed tree
|
|
test(new Integer[] { 1, 2, 3, 4 }, new Integer[] { 4, 3, 2, 1 }); // left skewed tree
|
|
test(new Integer[] { 3, 9, 20, 15, 7 }, new Integer[] { 9, 3, 15, 20, 7 }); // normal tree
|
|
}
|
|
|
|
private static void test(final Integer[] preorder, final Integer[] inorder) {
|
|
System.out.println("\n====================================================");
|
|
System.out.println("Naive Solution...");
|
|
BinaryTree root = new BinaryTree(createTree(preorder, inorder, 0, 0, inorder.length));
|
|
System.out.println("Preorder Traversal: ");
|
|
root.preOrder(root.getRoot());
|
|
System.out.println("\nInorder Traversal: ");
|
|
root.inOrder(root.getRoot());
|
|
System.out.println("\nPostOrder Traversal: ");
|
|
root.postOrder(root.getRoot());
|
|
|
|
Map<Integer, Integer> map = new HashMap<>();
|
|
for (int i = 0; i < inorder.length; i++) {
|
|
map.put(inorder[i], i);
|
|
}
|
|
BinaryTree optimizedRoot = new BinaryTree(createTreeOptimized(preorder, inorder, 0, 0, inorder.length, map));
|
|
System.out.println("\n\nOptimized solution...");
|
|
System.out.println("Preorder Traversal: ");
|
|
optimizedRoot.preOrder(root.getRoot());
|
|
System.out.println("\nInorder Traversal: ");
|
|
optimizedRoot.inOrder(root.getRoot());
|
|
System.out.println("\nPostOrder Traversal: ");
|
|
optimizedRoot.postOrder(root.getRoot());
|
|
}
|
|
|
|
private static Node createTree(final Integer[] preorder, final Integer[] inorder,
|
|
final int preStart, final int inStart, final int size) {
|
|
if (size == 0) {
|
|
return null;
|
|
}
|
|
|
|
Node root = new Node(preorder[preStart]);
|
|
int i = inStart;
|
|
while (preorder[preStart] != inorder[i]) {
|
|
i++;
|
|
}
|
|
int leftNodesCount = i - inStart;
|
|
int rightNodesCount = size - leftNodesCount - 1;
|
|
root.left = createTree(preorder, inorder, preStart + 1, inStart, leftNodesCount);
|
|
root.right = createTree(preorder, inorder, preStart + leftNodesCount + 1, i + 1,
|
|
rightNodesCount);
|
|
return root;
|
|
|
|
}
|
|
|
|
private static Node createTreeOptimized(final Integer[] preorder, final Integer[] inorder,
|
|
final int preStart, final int inStart, final int size,
|
|
final Map<Integer, Integer> inorderMap) {
|
|
if (size == 0) {
|
|
return null;
|
|
}
|
|
|
|
Node root = new Node(preorder[preStart]);
|
|
int i = inorderMap.get(preorder[preStart]);
|
|
int leftNodesCount = i - inStart;
|
|
int rightNodesCount = size - leftNodesCount - 1;
|
|
root.left = createTreeOptimized(preorder, inorder, preStart + 1, inStart,
|
|
leftNodesCount, inorderMap);
|
|
root.right = createTreeOptimized(preorder, inorder, preStart + leftNodesCount + 1,
|
|
i + 1, rightNodesCount, inorderMap);
|
|
return root;
|
|
}
|
|
|
|
}
|