JavaAlgorithms/MatrixExponentiation/Fibonacci.java

75 lines
2.7 KiB
Java

package MatrixExponentiation;
import java.util.Scanner;
/** @author Anirudh Buvanesh (https://github.com/anirudhb11)
* For more information see https://www.geeksforgeeks.org/matrix-exponentiation/
* */
public class Fibonacci {
// Exponentiation matrix for Fibonacci sequence
private static final int [][] fibMatrix = {{1,1}, {1,0}};
private static final int [][] identityMatrix = {{1,0}, {0,1}};
//First 2 fibonacci numbers
private static final int [][] baseFibNumbers = {{1}, {0}};
/**
* Performs multiplication of 2 matrices
* @param matrix1
* @param matrix2
* @return The product of matrix1 and matrix2
*/
private static int[][] matrixMultiplication(int[][] matrix1, int[][] matrix2){
//Check if matrices passed can be multiplied
int rowsInMatrix1 = matrix1.length;
int columnsInMatrix1 = matrix1[0].length;
int rowsInMatrix2 = matrix2.length;
int columnsInMatrix2 = matrix2[0].length;
assert columnsInMatrix1 == rowsInMatrix2;
int [][] product = new int[rowsInMatrix1][columnsInMatrix2];
for (int rowIndex = 0; rowIndex < rowsInMatrix1; rowIndex ++){
for(int colIndex = 0; colIndex < columnsInMatrix2; colIndex++){
int matrixEntry = 0;
for(int intermediateIndex = 0; intermediateIndex < columnsInMatrix1; intermediateIndex++){
matrixEntry += matrix1[rowIndex][intermediateIndex] * matrix2[intermediateIndex][colIndex];
}
product[rowIndex][colIndex] = matrixEntry;
}
}
return product;
}
/**
* Calculates the fibonacci number using matrix exponentiaition technique
* @param n The input n for which we have to determine the fibonacci number Outputs the nth
* * fibonacci number
* @return a 2 X 1 array as { {F_n+1}, {F_n} }
*/
public static int[][] fib(int n){
if(n == 0){
return Fibonacci.identityMatrix;
}
else{
int [][] cachedResult = fib(n/2);
int [][] matrixExpResult = matrixMultiplication(cachedResult, cachedResult);
if(n%2 == 0){
return matrixExpResult;
}
else{
return matrixMultiplication(Fibonacci.fibMatrix, matrixExpResult);
}
}
}
public static void main(String[] args) {
// Returns [0, 1, 1, 2, 3, 5 ..] for n = [0, 1, 2, 3, 4, 5.. ]
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int [][] result = matrixMultiplication(fib(n), baseFibNumbers);
System.out.println("Fib(" + n + ") = "+ result[1][0] );
sc.close();
}
}