60 lines
1.3 KiB
Java
60 lines
1.3 KiB
Java
package DynamicProgramming;
|
|
// Here is the top-down approach of
|
|
// dynamic programming
|
|
public class MemoizationTechniqueKnapsack {
|
|
|
|
//A utility function that returns
|
|
//maximum of two integers
|
|
static int max(int a, int b) {
|
|
return (a > b) ? a : b;
|
|
}
|
|
|
|
//Returns the value of maximum profit
|
|
static int knapSackRec(int W, int wt[], int val[], int n, int[][] dp) {
|
|
|
|
// Base condition
|
|
if (n == 0 || W == 0)
|
|
return 0;
|
|
|
|
if (dp[n][W] != -1)
|
|
return dp[n][W];
|
|
|
|
if (wt[n - 1] > W)
|
|
|
|
// Store the value of function call
|
|
// stack in table before return
|
|
return dp[n][W] = knapSackRec(W, wt, val, n - 1, dp);
|
|
|
|
else
|
|
|
|
// Return value of table after storing
|
|
return dp[n][W] = max((val[n - 1] + knapSackRec(W - wt[n - 1], wt, val, n - 1, dp)),
|
|
knapSackRec(W, wt, val, n - 1, dp));
|
|
}
|
|
|
|
static int knapSack(int W, int wt[], int val[], int N) {
|
|
|
|
// Declare the table dynamically
|
|
int dp[][] = new int[N + 1][W + 1];
|
|
|
|
// Loop to initially filled the
|
|
// table with -1
|
|
for (int i = 0; i < N + 1; i++)
|
|
for (int j = 0; j < W + 1; j++)
|
|
dp[i][j] = -1;
|
|
|
|
return knapSackRec(W, wt, val, N, dp);
|
|
}
|
|
|
|
//Driver Code
|
|
public static void main(String[] args) {
|
|
int val[] = { 60, 100, 120 };
|
|
int wt[] = { 10, 20, 30 };
|
|
|
|
int W = 50;
|
|
int N = val.length;
|
|
|
|
System.out.println(knapSack(W, wt, val, N));
|
|
}
|
|
}
|