98 lines
2.7 KiB
Java
98 lines
2.7 KiB
Java
package DynamicProgramming;
|
|
|
|
import java.io.BufferedReader;
|
|
import java.io.InputStreamReader;
|
|
import java.util.HashMap;
|
|
import java.util.Map;
|
|
|
|
/**
|
|
* @author Varun Upadhyay (https://github.com/varunu28)
|
|
*/
|
|
|
|
public class Fibonacci {
|
|
|
|
private static Map<Integer, Integer> map = new HashMap<>();
|
|
|
|
public static void main(String[] args) throws Exception {
|
|
|
|
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
|
|
int size = Integer.parseInt(br.readLine());
|
|
|
|
// Methods all returning [0, 1, 1, 2, 3, 5, ...] for n = [0, 1, 2, 3, 4, 5, ...]
|
|
System.out.println(fibMemo(size));
|
|
System.out.println(fibBotUp(size));
|
|
}
|
|
|
|
/**
|
|
* This method finds the nth fibonacci number using memoization technique
|
|
*
|
|
* @param n The input n for which we have to determine the fibonacci number
|
|
* Outputs the nth fibonacci number
|
|
**/
|
|
private static int fibMemo(int n) {
|
|
if (map.containsKey(n)) {
|
|
return map.get(n);
|
|
}
|
|
|
|
int f;
|
|
|
|
if (n <= 1) {
|
|
f = n;
|
|
} else {
|
|
f = fibMemo(n - 1) + fibMemo(n - 2);
|
|
map.put(n, f);
|
|
}
|
|
return f;
|
|
}
|
|
|
|
/**
|
|
* This method finds the nth fibonacci number using bottom up
|
|
*
|
|
* @param n The input n for which we have to determine the fibonacci number
|
|
* Outputs the nth fibonacci number
|
|
**/
|
|
private static int fibBotUp(int n) {
|
|
|
|
Map<Integer, Integer> fib = new HashMap<>();
|
|
|
|
for (int i = 0; i <= n; i++) {
|
|
int f;
|
|
if (i <= 1) {
|
|
f = i;
|
|
} else {
|
|
f = fib.get(i - 1) + fib.get(i - 2);
|
|
}
|
|
fib.put(i, f);
|
|
}
|
|
|
|
return fib.get(n);
|
|
}
|
|
|
|
|
|
/**
|
|
* This method finds the nth fibonacci number using bottom up
|
|
*
|
|
* @param n The input n for which we have to determine the fibonacci number
|
|
* Outputs the nth fibonacci number
|
|
* <p>
|
|
* This is optimized version of Fibonacci Program. Without using Hashmap and recursion.
|
|
* It saves both memory and time.
|
|
* Space Complexity will be O(1)
|
|
* Time Complexity will be O(n)
|
|
* <p>
|
|
* Whereas , the above functions will take O(n) Space.
|
|
* @author Shoaib Rayeen (https://github.com/shoaibrayeen)
|
|
**/
|
|
private static int fibOptimized(int n) {
|
|
if (n == 0) {
|
|
return 0;
|
|
}
|
|
int prev = 0, res = 1, next;
|
|
for (int i = 2; i < n; i++) {
|
|
next = prev + res;
|
|
prev = res;
|
|
res = next;
|
|
}
|
|
return res;
|
|
}
|
|
} |