mirror of
https://gitee.com/TheAlgorithms/LeetCodeAnimation.git
synced 2024-12-31 15:25:33 +08:00
88 lines
2.2 KiB
Java
88 lines
2.2 KiB
Java
|
> 本文首发于公众号「图解面试算法」,是 [图解 LeetCode ](<https://github.com/MisterBooo/LeetCodeAnimation>) 系列文章之一。
|
|||
|
>
|
|||
|
> 个人博客:https://www.zhangxiaoshuai.fun
|
|||
|
|
|||
|
**本题选自leetcode中第1137题,easy级别,目前通过率52.4%**
|
|||
|
|
|||
|
### 题目描述:
|
|||
|
|
|||
|
```txt
|
|||
|
泰波那契序列 Tn 定义如下:
|
|||
|
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2
|
|||
|
给你整数 n,请返回第 n 个泰波那契数 Tn 的值。
|
|||
|
|
|||
|
示例 1:
|
|||
|
输入:n = 4
|
|||
|
输出:4
|
|||
|
解释:
|
|||
|
T_3 = 0 + 1 + 1 = 2
|
|||
|
T_4 = 1 + 1 + 2 = 4
|
|||
|
|
|||
|
示例 2:
|
|||
|
输入:n = 25
|
|||
|
输出:1389537
|
|||
|
|
|||
|
提示:
|
|||
|
0 <= n <= 37
|
|||
|
答案保证是一个 32 位整数,即 answer <= 2^31 - 1。
|
|||
|
```
|
|||
|
|
|||
|
### 题目分析:
|
|||
|
要是之前有接触过斐波那契数列的话,这道题是非常容易有解决思路的。我们有以下三种方法(正经方法两种,哈哈哈)来解决该问题:
|
|||
|
|
|||
|
```
|
|||
|
1.递归(但是leetcode中是无法AC的,超出时间限制,但是还是会将代码展示出来)
|
|||
|
2.动态规划(这种题都是已知前面的来求得未知的,使用dp再合适不过)
|
|||
|
3.暴力(抖机灵,看一乐就可以啦)
|
|||
|
```
|
|||
|
|
|||
|
### GIF动画演示:
|
|||
|
|
|||
|
![](1137-Tribonacci.gif)
|
|||
|
|
|||
|
## 代码:
|
|||
|
|
|||
|
### 递归版本:
|
|||
|
|
|||
|
```java
|
|||
|
public int tribonacci(int n) {
|
|||
|
if (n == 0) {
|
|||
|
return 0;
|
|||
|
}
|
|||
|
if (n == 1 || n == 2) {
|
|||
|
return 1;
|
|||
|
}
|
|||
|
return tribonacci(n - 1) + tribonacci(n - 2) + tribonacci(n -3);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
### 动态规划
|
|||
|
|
|||
|
```java
|
|||
|
int[] dp = new int[38];
|
|||
|
public int tribonacci(int n) {
|
|||
|
if (dp[n] != 0) {
|
|||
|
return dp[n];
|
|||
|
}
|
|||
|
if (n == 0) {
|
|||
|
return 0;
|
|||
|
} else if (n == 1 || n == 2) {
|
|||
|
return 1;
|
|||
|
} else {
|
|||
|
int res = tribonacci(n - 1) + tribonacci(n - 2) + tribonacci(n - 3);
|
|||
|
dp[n] = res;
|
|||
|
return res;
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
### 暴力法(十分暴力,哈哈哈哈……)
|
|||
|
|
|||
|
```java
|
|||
|
public int tribonacci(int n) {
|
|||
|
int[] Ts = {0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513, 35890, 66012, 121415, 223317, 410744, 755476, 1389537, 2555757, 4700770, 8646064, 15902591, 29249425, 53798080, 98950096, 181997601, 334745777, 615693474, 1132436852, 2082876103};
|
|||
|
return Ts[n];
|
|||
|
}
|
|||
|
```
|
|||
|
|