mirror of
https://gitee.com/TheAlgorithms/LeetCodeAnimation.git
synced 2024-12-31 15:25:33 +08:00
problem 200
This commit is contained in:
parent
95e49fc1b5
commit
eec0d1922b
BIN
0200-Number-of-Islands/Animation/Animation.gif
Normal file
BIN
0200-Number-of-Islands/Animation/Animation.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.0 MiB |
BIN
0200-Number-of-Islands/Animation/Animation.m4v
Normal file
BIN
0200-Number-of-Islands/Animation/Animation.m4v
Normal file
Binary file not shown.
84
0200-Number-of-Islands/Article/0200-Number-of-Islands.md
Normal file
84
0200-Number-of-Islands/Article/0200-Number-of-Islands.md
Normal file
@ -0,0 +1,84 @@
|
||||
# LeetCode 图解 | 200. 岛屿数量
|
||||
|
||||
## 题目描述
|
||||
|
||||
给定一个由 `'1'`(陆地)和 `'0'`(水)组成的的二维网格,计算岛屿的数量。一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的。你可以假设网格的四个边均被水包围。
|
||||
|
||||
**示例 1:**
|
||||
|
||||
```
|
||||
输入:
|
||||
11110
|
||||
11010
|
||||
11000
|
||||
00000
|
||||
|
||||
输出: 1
|
||||
```
|
||||
|
||||
**示例 2:**
|
||||
|
||||
```
|
||||
输入:
|
||||
11000
|
||||
11000
|
||||
00100
|
||||
00011
|
||||
|
||||
输出: 3
|
||||
```
|
||||
|
||||
## 题目解析
|
||||
|
||||
这道题的主要思路是深度优先搜索。每次走到一个是 1 的格子,就搜索整个岛屿。
|
||||
|
||||
网格可以看成是一个无向图的结构,每个格子和它上下左右的四个格子相邻。如果四个相邻的格子坐标合法,且是陆地,就可以继续搜索。
|
||||
|
||||
在深度优先搜索的时候要注意避免重复遍历。我们可以把已经遍历过的陆地改成 2,这样遇到 2 我们就知道已经遍历过这个格子了,不进行重复遍历。
|
||||
|
||||
每遇到一个陆地格子就进行深度优先搜索,最终搜索了几次就知道有几个岛屿。
|
||||
|
||||
## 动画理解
|
||||
|
||||
![](../Animation/Animation.gif)
|
||||
|
||||
## 参考代码
|
||||
|
||||
```Java
|
||||
class Solution {
|
||||
public int numIslands(char[][] grid) {
|
||||
if (grid.length == 0 || grid[0].length == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
int count = 0;
|
||||
for (int r = 0; r < grid.length; r++) {
|
||||
for (int c = 0; c < grid[0].length; c++) {
|
||||
if (grid[r][c] == '1') {
|
||||
dfs(grid, r, c);
|
||||
count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
void dfs(char[][] grid, int r, int c) {
|
||||
if (!(0 <= r && r < grid.length && 0 <= c && c < grid[0].length)) {
|
||||
return;
|
||||
}
|
||||
if (grid[r][c] != '1') {
|
||||
return;
|
||||
}
|
||||
grid[r][c] = '2';
|
||||
dfs(grid, r - 1, c);
|
||||
dfs(grid, r + 1, c);
|
||||
dfs(grid, r, c - 1);
|
||||
dfs(grid, r, c + 1);
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## 复杂度分析
|
||||
|
||||
设网格的边长为 $n$,则时间复杂度为 $O(n^2)$。
|
Loading…
Reference in New Issue
Block a user