mirror of
https://gitee.com/TheAlgorithms/Statistical-Learning-Method_Code.git
synced 2024-12-22 12:48:55 +08:00
Add Page_Rank.py
This commit is contained in:
parent
1e1898b5fa
commit
f062e580d7
98
Page_Rank/Page_Rank.py
Normal file
98
Page_Rank/Page_Rank.py
Normal file
@ -0,0 +1,98 @@
|
||||
#coding=utf-8
|
||||
#Author:Harold
|
||||
#Date:2021-1-27
|
||||
#Email:zenghr_zero@163.com
|
||||
|
||||
'''
|
||||
有向图:directed_graph.png
|
||||
结点数量:7
|
||||
-----------------------------
|
||||
运行结果:
|
||||
迭代算法:
|
||||
迭代次数:24
|
||||
PageRank: [[0.17030305]
|
||||
[0.10568394]
|
||||
[0.11441021]
|
||||
[0.10629792]
|
||||
[0.10568394]
|
||||
[0.15059975]
|
||||
[0.24702119]]
|
||||
运行时长:0.0010s
|
||||
幂法:
|
||||
迭代次数:25
|
||||
PageRank: [[0.18860772]
|
||||
[0.09038084]
|
||||
[0.0875305 ]
|
||||
[0.07523049]
|
||||
[0.09038084]
|
||||
[0.15604764]
|
||||
[0.31182196]]
|
||||
运行时长:0.0020s
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
|
||||
#PageRank的迭代算法
|
||||
def iter_method(n, d, M, R0, eps):
|
||||
t = 0 #用来累计迭代次数
|
||||
R = R0 #对R向量进行初始化
|
||||
judge = False #用来判断是否继续迭代
|
||||
while not judge:
|
||||
next_R = d * np.matmul(M, R) + (1 - d) / n * np.ones((7, 1)) #计算新的R向量
|
||||
diff = np.linalg.norm(R - next_R) #计算新的R向量与之前的R向量之间的距离,这里采用的是欧氏距离
|
||||
if diff < eps: #若两向量之间的距离足够小
|
||||
judge = True #则停止迭代
|
||||
R = next_R #更新R向量
|
||||
t += 1 #迭代次数加一
|
||||
R = R / np.sum(R) #对R向量进行规范化,保证其总和为1,表示各节点的概率分布
|
||||
return t, R
|
||||
|
||||
|
||||
def power_method(n, d, M, R0, eps):
|
||||
t = 0 #用来累计迭代次数
|
||||
x = R0 #对x向量进行初始化
|
||||
judge = False #用来判断是否继续迭代
|
||||
A = d * M + (1 - d) / n * np.eye(n) #计算A矩阵,其中np.eye(n)用来创建n阶单位阵E
|
||||
while not judge:
|
||||
next_y = np.matmul(A, x) #计算新的y向量
|
||||
next_x = next_y / np.linalg.norm(next_y) #对新的y向量规范化得到新的x向量
|
||||
diff = np.linalg.norm(x - next_x) #计算新的x向量与之前的x向量之间的距离,这里采用的是欧氏距离
|
||||
if diff < eps: #若两向量之间的距离足够小
|
||||
judge = True #则停止迭代
|
||||
R = x #得到R向量
|
||||
x = next_x #更新x向量
|
||||
t += 1 #迭代次数加一
|
||||
R = R / np.sum(R) #对R向量进行规范化,保证其总和为1,表示各节点的概率分布
|
||||
return t, R
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
n = 7 #有向图中一共有7个节点
|
||||
d = 0.85 #阻尼因子根据经验值确定,这里我们随意给一个值
|
||||
M = np.array([[0, 1/4, 1/3, 0, 0, 1/2, 0],
|
||||
[1/4, 0, 0, 1/5, 0, 0, 0],
|
||||
[0, 1/4, 0, 1/5, 1/4, 0, 0],
|
||||
[0, 0, 1/3, 0, 1/4, 0, 0],
|
||||
[1/4, 0, 0, 1/5, 0, 0, 0],
|
||||
[1/4, 1/4, 0, 1/5, 1/4, 0, 0],
|
||||
[1/4, 1/4, 1/3, 1/5, 1/4, 1/2, 0]]) #根据有向图中各节点的连接情况写出转移矩阵
|
||||
R0 = np.full((7, 1), 1/7) #设置初始向量R0,R0是一个7*1的列向量,因为有7个节点,我们把R0的每一个值都设为1/7
|
||||
eps = 0.000001 #设置计算精度
|
||||
|
||||
start = time.time() #保存开始时间
|
||||
t, R = iter_method(n, d, M, R0, eps)
|
||||
end = time.time() #保存结束时间
|
||||
print('-------PageRank的迭代算法-------')
|
||||
print('迭代次数:', t)
|
||||
print('PageRank: \n', R)
|
||||
print('Time:', end-start)
|
||||
|
||||
start = time.time() #保存开始时间
|
||||
t, R = power_method(n, d, M, R0, eps)
|
||||
end = time.time() #保存结束时间
|
||||
print('-------PageRank的幂法-------')
|
||||
print('迭代次数:', t)
|
||||
print('PageRank: \n', R)
|
||||
print('Time:', end-start)
|
Loading…
Reference in New Issue
Block a user