{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### PageRank算法\n", "以下图所示的有向图为例,计算每个结点的PR:\n", "" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "\n", "n = 7 #有向图中一共有7个节点\n", "d = 0.85 #阻尼因子根据经验值确定,这里我们随意给一个值\n", "M = np.array([[0, 1/4, 1/3, 0, 0, 1/2, 0],\n", " [1/4, 0, 0, 1/5, 0, 0, 0],\n", " [0, 1/4, 0, 1/5, 1/4, 0, 0],\n", " [0, 0, 1/3, 0, 1/4, 0, 0],\n", " [1/4, 0, 0, 1/5, 0, 0, 0],\n", " [1/4, 1/4, 0, 1/5, 1/4, 0, 0],\n", " [1/4, 1/4, 1/3, 1/5, 1/4, 1/2, 0]]) #根据有向图中各节点的连接情况写出转移矩阵\n", "R0 = np.full((7, 1), 1/7) #设置初始向量R0,R0是一个7*1的列向量,因为有7个节点,我们把R0的每一个值都设为1/7\n", "eps = 0.000001 #设置计算精度" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. PageRank的迭代算法" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "t = 0 #用来累计迭代次数\n", "R = R0 #对R向量进行初始化\n", "judge = False #用来判断是否继续迭代\n", "while not judge:\n", " next_R = d * np.matmul(M, R) + (1 - d) / n * np.ones((7, 1)) #计算新的R向量\n", " diff = np.linalg.norm(R - next_R) #计算新的R向量与之前的R向量之间的距离,这里采用的是欧氏距离\n", " if diff < eps: #若两向量之间的距离足够小\n", " judge = True #则停止迭代\n", " R = next_R #更新R向量\n", " t += 1 #迭代次数加一\n", "R = R / np.sum(R) #对R向量进行规范化,保证其总和为1,表示各节点的概率分布" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "迭代次数: 24\n", "PageRank: \n", " [[0.17030305]\n", " [0.10568394]\n", " [0.11441021]\n", " [0.10629792]\n", " [0.10568394]\n", " [0.15059975]\n", " [0.24702119]]\n" ] } ], "source": [ "print('迭代次数:', t)\n", "print('PageRank: \\n', R)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. PageRank的幂法" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "t = 0 #用来累计迭代次数\n", "x = R0 #对x向量进行初始化\n", "judge = False #用来判断是否继续迭代\n", "A = d * M + (1 - d) / n * np.eye(n) #计算A矩阵,其中np.eye(n)用来创建n阶单位阵E\n", "while not judge:\n", " next_y = np.matmul(A, x) #计算新的y向量\n", " next_x = next_y / np.linalg.norm(next_y) #对新的y向量规范化得到新的x向量\n", " diff = np.linalg.norm(x - next_x) #计算新的x向量与之前的x向量之间的距离,这里采用的是欧氏距离\n", " if diff < eps: #若两向量之间的距离足够小\n", " judge = True #则停止迭代\n", " R = x #得到R向量\n", " x = next_x #更新x向量\n", " t += 1 #迭代次数加一\n", "R = R / np.sum(R) #对R向量进行规范化,保证其总和为1,表示各节点的概率分布" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "迭代次数: 25\n", "PageRank: \n", " [[0.18860772]\n", " [0.09038084]\n", " [0.0875305 ]\n", " [0.07523049]\n", " [0.09038084]\n", " [0.15604764]\n", " [0.31182196]]\n" ] } ], "source": [ "print('迭代次数:', t)\n", "print('PageRank: \\n', R)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }