mirror of
https://gitee.com/TheAlgorithms/Statistical-Learning-Method_Code.git
synced 2025-01-03 17:32:21 +08:00
36 lines
1.1 KiB
Python
36 lines
1.1 KiB
Python
#coding=utf-8
|
||
'''
|
||
Mnsit原始数据集为字符格式,将数据集转换为cvs格式,
|
||
后续代码都会在cvs文件的基础上进行编写,这样大家看代码也能清楚很多
|
||
代码由以下网址提供,表示感谢。
|
||
https://pjreddie.com/projects/mnist-in-csv/
|
||
|
||
该py文件属于一个补充,不使用也不影响后续算法的实践。
|
||
转换后的CVS文件在Mnist文件夹中
|
||
'''
|
||
def convert(imgf, labelf, outf, n):
|
||
f = open(imgf, "rb")
|
||
o = open(outf, "w")
|
||
l = open(labelf, "rb")
|
||
|
||
f.read(16)
|
||
l.read(8)
|
||
images = []
|
||
|
||
for i in range(n):
|
||
image = [ord(l.read(1))]
|
||
for j in range(28*28):
|
||
image.append(ord(f.read(1)))
|
||
images.append(image)
|
||
|
||
for image in images:
|
||
o.write(",".join(str(pix) for pix in image)+"\n")
|
||
f.close()
|
||
o.close()
|
||
l.close()
|
||
|
||
if __name__ == '__main__':
|
||
convert(".\Mnist\\t10k-images.idx3-ubyte", ".\Mnist\\t10k-labels.idx1-ubyte",
|
||
".\Mnist\\mnist_test.csv", 10000)
|
||
convert(".\Mnist\\train-images.idx3-ubyte", ".\Mnist\\train-labels.idx1-ubyte",
|
||
".\Mnist\mnist_train.csv", 60000) |