algo/rust/29_heap/get_median.rs

57 lines
1.7 KiB
Rust
Raw Normal View History

use std::collections::BinaryHeap;
// 动态数组取位数
// 对数组进行从小到大排序,数组下标为 n/2 的数据即为中位数
fn get_median(nums: &mut Vec<i32>, x: i32) -> i32 {
let nums_len = nums.len();
let mid = nums_len >> 1;
let mut max_heap = BinaryHeap::new();
let mut min_heap = BinaryHeap::new();
nums.sort();
// 将数组前半部分数据放入大顶堆
// 数组后半部分数据入入小顶堆
for i in 0..nums_len {
if i < mid {
max_heap.push(nums[i]);
} else {
min_heap.push(-nums[i]);
}
}
nums.push(x);
// 校验待插入数据
// 若此数据小于大顶堆中顶数据,则将此数据插入大顶堆
// 若此数据大于大顶堆中顶数据,将此数据插入小顶堆
if x <= *max_heap.peek().unwrap() {
max_heap.push(x);
} else {
min_heap.push(-x);
}
// 平衡两个堆
// 大顶堆的数据个数一定小于等于小顶堆数据个数
// 小顶堆数据个数一定是等于或者比大顶堆数据个数多1个
// 不满足上述两个条件,即进行堆平衡
if max_heap.len() > min_heap.len() {
min_heap.push(-max_heap.pop().unwrap());
} else if min_heap.len() - max_heap.len() >= 2 {
max_heap.push(-min_heap.pop().unwrap());
}
-*min_heap.peek().unwrap()
}
fn main() {
let mut nums = vec![12, 45, 30, 77, 5, 6, 7, 8];
let m = get_median(&mut nums, 9);
println!("{:?}", m); // 9
let n = get_median(&mut nums, 20);
println!("{:?}", n); // 12
let h = get_median(&mut nums, 11);
println!("{:?}", h); // 11
let i = get_median(&mut nums, 10);
println!("{:?}", i); // 11
}