#!/usr/bin/python # -*- coding: UTF-8 -*- from typing import List, Generator import heapq class Graph: def __init__(self, vertex_count: int) -> None: self.adj = [[] for _ in range(vertex_count)] def add_edge(self, s: int, t: int, w: int) -> None: edge = Edge(s, t, w) self.adj[s].append(edge) def __len__(self) -> int: return len(self.adj) class Vertex: def __init__(self, v: int, dist: int) -> None: self.id = v self.dist = dist def __gt__(self, other) -> bool: return self.dist > other.dist def __repr__(self) -> str: return str((self.id, self.dist)) class Edge: def __init__(self, source: int, target: int, weight: int) -> None: self.s = source self.t = target self.w = weight class VertexPriorityQueue: def __init__(self) -> None: self.vertices = [] def get(self) -> Vertex: return heapq.heappop(self.vertices) def put(self, v: Vertex) -> None: self.vertices.append(v) self.update_priority() def empty(self) -> bool: return len(self.vertices) == 0 def update_priority(self) -> None: heapq.heapify(self.vertices) def __repr__(self) -> str: return str(self.vertices) def dijkstra(g: Graph, s: int, t: int) -> int: size = len(g) pq = VertexPriorityQueue() # 节点队列 in_queue = [False] * size # 已入队标记 vertices = [ # 需要随时更新离s的最短距离的节点列表 Vertex(v, float('inf')) for v in range(size) ] predecessor = [-1] * size # 先驱 vertices[s].dist = 0 pq.put(vertices[s]) in_queue[s] = True while not pq.empty(): v = pq.get() if v.id == t: break for edge in g.adj[v.id]: if v.dist + edge.w < vertices[edge.t].dist: # 当修改了pq中的元素的优先级后: # 1. 有入队操作:触发了pq的堆化,此后出队可以取到优先级最高的顶点 # 2. 无入队操作:此后出队取到的顶点可能不是优先级最高的,会有bug # 为确保正确,需要手动更新一次 vertices[edge.t].dist = v.dist + edge.w predecessor[edge.t] = v.id pq.update_priority() # 更新堆结构 if not in_queue[edge.t]: pq.put(vertices[edge.t]) in_queue[edge.t] = True for n in print_path(s, t, predecessor): if n == t: print(t) else: print(n, end=' -> ') return vertices[t].dist def print_path(s: int, t: int, p: List[int]) -> Generator[int, None, None]: if t == s: yield s else: yield from print_path(s, p[t], p) yield t if __name__ == '__main__': g = Graph(6) g.add_edge(0, 1, 10) g.add_edge(0, 4, 15) g.add_edge(1, 2, 15) g.add_edge(1, 3, 2) g.add_edge(2, 5, 5) g.add_edge(3, 2, 1) g.add_edge(3, 5, 12) g.add_edge(4, 5, 10) print(dijkstra(g, 0, 5)) # 下面这个用例可以暴露更新队列元素优先级的问题 # g = Graph(4) # g.add_edge(0, 1, 18) # g.add_edge(0, 2, 3) # g.add_edge(2, 1, 1) # g.add_edge(1, 3, 5) # g.add_edge(2, 3, 8) # g.add_edge(0, 3, 15) # print(dijkstra(g, 0, 3))