59 lines
2.2 KiB
Python
59 lines
2.2 KiB
Python
#!/usr/bin/python
|
||
# -*- coding: UTF-8 -*-
|
||
|
||
from typing import List
|
||
|
||
|
||
def longest_increasing_subsequence(nums: List[int]) -> int:
|
||
"""
|
||
最长子上升序列的一种DP解法,从回溯解法转化,思路类似于有限物品的背包问题
|
||
每一次决策都算出当前可能的lis的长度,重复子问题合并,合并策略是lis的末尾元素最小
|
||
时间复杂度:O(n^2)
|
||
空间复杂度:O(n^2),可优化至O(n)
|
||
|
||
没leetcode上的参考答案高效,提供另一种思路作为参考
|
||
https://leetcode.com/problems/longest-increasing-subsequence/solution/
|
||
:param nums:
|
||
:return:
|
||
"""
|
||
if not nums:
|
||
return 0
|
||
|
||
n = len(nums)
|
||
# memo[i][j] 表示第i次决策,长度为j的lis的 最小的 末尾元素数值
|
||
# 每次决策都根据上次决策的所有可能转化,空间上可以类似背包优化为O(n)
|
||
memo = [[-1] * (n+1) for _ in range(n)]
|
||
|
||
# 第一列全赋值为0,表示每次决策都不选任何数
|
||
for i in range(n):
|
||
memo[i][0] = 0
|
||
# 第一次决策选数组中的第一个数
|
||
memo[0][1] = nums[0]
|
||
|
||
for i in range(1, n):
|
||
for j in range(1, n+1):
|
||
# case 1: 长度为j的lis在上次决策后存在,nums[i]比长度为j-1的lis末尾元素大
|
||
if memo[i-1][j] != -1 and nums[i] > memo[i-1][j-1]:
|
||
memo[i][j] = min(nums[i], memo[i-1][j])
|
||
|
||
# case 2: 长度为j的lis在上次决策后存在,nums[i]比长度为j-1的lis末尾元素小/等
|
||
if memo[i-1][j] != -1 and nums[i] <= memo[i-1][j-1]:
|
||
memo[i][j] = memo[i-1][j]
|
||
|
||
if memo[i-1][j] == -1:
|
||
# case 3: 长度为j的lis不存在,nums[i]比长度为j-1的lis末尾元素大
|
||
if nums[i] > memo[i-1][j-1]:
|
||
memo[i][j] = nums[i]
|
||
# case 4: 长度为j的lis不存在,nums[i]比长度为j-1的lis末尾元素小/等
|
||
break
|
||
|
||
for i in range(n, -1, -1):
|
||
if memo[-1][i] != -1:
|
||
return i
|
||
|
||
|
||
if __name__ == '__main__':
|
||
# 要求输入的都是大于0的正整数(可优化至支持任意整数)
|
||
nums = [2, 9, 3, 6, 5, 1, 7]
|
||
print(longest_increasing_subsequence(nums))
|