97 lines
2.3 KiB
Java
97 lines
2.3 KiB
Java
package sorts;
|
||
|
||
/**
|
||
* Created by wangzheng on 2018/10/16.
|
||
*/
|
||
public class MergeSort {
|
||
|
||
// 归并排序算法, a是数组,n表示数组大小
|
||
public static void mergeSort(int[] a, int n) {
|
||
mergeSortInternally(a, 0, n-1);
|
||
}
|
||
|
||
// 递归调用函数
|
||
private static void mergeSortInternally(int[] a, int p, int r) {
|
||
// 递归终止条件
|
||
if (p >= r) return;
|
||
|
||
// 取p到r之间的中间位置q,防止(p+r)的和超过int类型最大值
|
||
int q = p + (r - p)/2;
|
||
// 分治递归
|
||
mergeSortInternally(a, p, q);
|
||
mergeSortInternally(a, q+1, r);
|
||
|
||
// 将A[p...q]和A[q+1...r]合并为A[p...r]
|
||
merge(a, p, q, r);
|
||
}
|
||
|
||
private static void merge(int[] a, int p, int q, int r) {
|
||
int i = p;
|
||
int j = q+1;
|
||
int k = 0; // 初始化变量i, j, k
|
||
int[] tmp = new int[r-p+1]; // 申请一个大小跟a[p...r]一样的临时数组
|
||
while (i<=q && j<=r) {
|
||
if (a[i] <= a[j]) {
|
||
tmp[k++] = a[i++]; // i++等于i:=i+1
|
||
} else {
|
||
tmp[k++] = a[j++];
|
||
}
|
||
}
|
||
|
||
// 判断哪个子数组中有剩余的数据
|
||
int start = i;
|
||
int end = q;
|
||
if (j <= r) {
|
||
start = j;
|
||
end = r;
|
||
}
|
||
|
||
// 将剩余的数据拷贝到临时数组tmp
|
||
while (start <= end) {
|
||
tmp[k++] = a[start++];
|
||
}
|
||
|
||
// 将tmp中的数组拷贝回a[p...r]
|
||
for (i = 0; i <= r-p; ++i) {
|
||
a[p+i] = tmp[i];
|
||
}
|
||
}
|
||
|
||
/**
|
||
* 合并(哨兵)
|
||
*
|
||
* @param arr
|
||
* @param p
|
||
* @param q
|
||
* @param r
|
||
*/
|
||
private static void mergeBySentry(int[] arr, int p, int q, int r) {
|
||
int[] leftArr = new int[q - p + 2];
|
||
int[] rightArr = new int[r - q + 1];
|
||
|
||
for (int i = 0; i <= q - p; i++) {
|
||
leftArr[i] = arr[p + i];
|
||
}
|
||
// 第一个数组添加哨兵(最大值)
|
||
leftArr[q - p + 1] = Integer.MAX_VALUE;
|
||
|
||
for (int i = 0; i < r - q; i++) {
|
||
rightArr[i] = arr[q + 1 + i];
|
||
}
|
||
// 第二个数组添加哨兵(最大值)
|
||
rightArr[r-q] = Integer.MAX_VALUE;
|
||
|
||
int i = 0;
|
||
int j = 0;
|
||
int k = p;
|
||
while (k <= r) {
|
||
// 当左边数组到达哨兵值时,i不再增加,直到右边数组读取完剩余值,同理右边数组也一样
|
||
if (leftArr[i] <= rightArr[j]) {
|
||
arr[k++] = leftArr[i++];
|
||
} else {
|
||
arr[k++] = rightArr[j++];
|
||
}
|
||
}
|
||
}
|
||
}
|