## 背景 向量检索是指用一组数字(向量)来量化一个事物,用大量向量来表示事物集合,用向量计算的方式寻找相似事物的一种检索方式。 isearch底层采用的向量检索框架为Facebook AI的Faiss,项目地址为:https://github.com/facebookresearch/faiss ## app_field_define表 在app_field_define表定义时,vector字段类型需定义好dim、index_type和metric_type三个属性,示例如下: ``` { "id":3, "appId":10065, "fieldName":"float_vector", "fieldType":15, "fieldId":3, "IsPrimaryKey":0, "indexTag":0, "snapshotTag":1, "segmentTag":0, "segmentFeature":0, "unionField":"", "createTime":"2021/4/13 15:49:09", "dim":128, // 维数 "index_type": [" PCA80,Flat "], // 索引类型,格式与faiss对外工厂类设置保持一致 "metric_type": "L2" // 距离计算方式,可选值:InnerProduct、L2 } ``` 说明:index_type参考https://github.com/facebookresearch/faiss/wiki/The-index-factory ## 向量插入示例 ``` curl -X POST \ http://127.0.0.1/insert \ -H 'content-type: application/json' \ -H 'doc_id: 1' \ -d '{"appid":10065,"table_content":{"cmd":"add","fields":{"doc_id":"1","random_value":1488981884,"float_vector":[0.005653954876242762, 0.632130963117687, 0.7519577013172226, 0.8568273368123129, 0.2034335192251041, 0.9786219451736441, 0.5948105950093241, 0.9618089054657426]}}}' ``` ## 向量查询示例 ``` curl -X POST \ http://127.0.0.1/search \ -H 'content-type: application/json' \ -d '{"appid":10065,"query":{"vector_query":{"float_vector":[0.005653954876242762, 0.632130963117687, 0.7519577013172226, 0.8568273368123129, 0.2034335192251041, 0.9786219451736441, 0.5948105950093241, 0.9618089054657426], "index_type_id":1}} }' ```